cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362022 a(n) is the least positive integer whose binary expansion is the concatenation of the binary expansions of two numbers whose product is n.

Original entry on oeis.org

3, 5, 7, 9, 11, 11, 15, 17, 15, 21, 23, 19, 27, 23, 23, 33, 35, 27, 39, 37, 31, 43, 47, 35, 45, 45, 39, 39, 59, 43, 63, 65, 47, 69, 47, 51, 75, 77, 55, 69, 83, 55, 87, 75, 63, 87, 95, 67, 63, 85, 71, 77, 107, 75, 91, 71, 79, 93, 119, 79, 123, 95, 79, 129, 93
Offset: 1

Views

Author

Rémy Sigrist, Apr 05 2023

Keywords

Comments

For any prime number p, a(p) is the least of the binary concatenation of p with 1 or the binary concatenation of 1 with p.

Examples

			The first terms, alongside their binary expansion split into two parts, are:
  n   a(n)  bin(a(n))
  --  ----  ---------
   1     3  1|1
   2     5  10|1
   3     7  11|1
   4     9  100|1
   5    11  101|1
   6    11  10|11
   7    15  111|1
   8    17  1000|1
   9    15  11|11
  10    21  1010|1
  11    23  1011|1
  12    19  100|11
  13    27  1101|1
  14    23  10|111
  15    23  101|11
		

Crossrefs

Cf. A070939, A163621, A362023 (decimal variant).

Programs

  • Mathematica
    Table[Min@ Map[FromDigits[Join @@ #, 2] &, Join @@ {#, Reverse /@ #}] &@ Map[IntegerDigits[#, 2] &, Transpose@{#, n/#}, {2}] &@ TakeWhile[Divisors[n], # <= Sqrt[n] &], {n, 60}] (* Michael De Vlieger, Apr 07 2023 *)
  • PARI
    a(n, base = 2) = { my (v = oo); fordiv (n, d, v = min(v, n/d * base^#digits(d, base) + d);); return (v); }
    
  • Python
    from sympy import divisors
    def a(n): return min(d+((n//d)<Michael S. Branicky, Apr 05 2023

Formula

a(n) <= 2*n + 1.
a(n) <= 2^A070939(n) + n.
a(n) = Min_{d | n} A163621(n/d, d).