A362022 a(n) is the least positive integer whose binary expansion is the concatenation of the binary expansions of two numbers whose product is n.
3, 5, 7, 9, 11, 11, 15, 17, 15, 21, 23, 19, 27, 23, 23, 33, 35, 27, 39, 37, 31, 43, 47, 35, 45, 45, 39, 39, 59, 43, 63, 65, 47, 69, 47, 51, 75, 77, 55, 69, 83, 55, 87, 75, 63, 87, 95, 67, 63, 85, 71, 77, 107, 75, 91, 71, 79, 93, 119, 79, 123, 95, 79, 129, 93
Offset: 1
Examples
The first terms, alongside their binary expansion split into two parts, are: n a(n) bin(a(n)) -- ---- --------- 1 3 1|1 2 5 10|1 3 7 11|1 4 9 100|1 5 11 101|1 6 11 10|11 7 15 111|1 8 17 1000|1 9 15 11|11 10 21 1010|1 11 23 1011|1 12 19 100|11 13 27 1101|1 14 23 10|111 15 23 101|11
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Min@ Map[FromDigits[Join @@ #, 2] &, Join @@ {#, Reverse /@ #}] &@ Map[IntegerDigits[#, 2] &, Transpose@{#, n/#}, {2}] &@ TakeWhile[Divisors[n], # <= Sqrt[n] &], {n, 60}] (* Michael De Vlieger, Apr 07 2023 *)
-
PARI
a(n, base = 2) = { my (v = oo); fordiv (n, d, v = min(v, n/d * base^#digits(d, base) + d);); return (v); }
-
Python
from sympy import divisors def a(n): return min(d+((n//d)<
Michael S. Branicky, Apr 05 2023
Comments