A239066 Triangle read by rows: row n lists the smallest positive ideal multigrade of degree n, or 2n+2 zeros if none.
1, 3, 2, 2, 1, 4, 4, 2, 2, 5, 1, 4, 5, 8, 2, 2, 7, 7, 1, 5, 9, 17, 18, 2, 3, 11, 15, 19, 1, 4, 6, 12, 14, 17, 2, 2, 9, 9, 16, 16, 1, 19, 20, 51, 57, 80, 82, 2, 12, 31, 40, 69, 71, 85, 1, 5, 10, 24, 28, 42, 47, 51, 2, 3, 12, 21, 31, 40, 49, 50, 1, 25, 31, 84, 87, 134, 158, 182, 198, 2, 18, 42, 66, 113, 116, 169, 175, 199, 1, 13, 126, 214, 215, 413, 414, 502, 615, 627, 6, 7, 134, 183, 243, 385, 445, 494, 621, 622
Offset: 1
Examples
1, 3; 2, 2 1, 4, 4; 2, 2, 5 1, 4, 5, 8; 2, 2, 7, 7 1, 5, 9, 17, 18; 2, 3, 11, 15, 19 1, 4, 6, 12, 14, 17; 2, 2, 9, 9, 16, 16 1, 19, 20, 51, 57, 80, 82; 2, 12, 31, 40, 69, 71, 85 1, 5, 10, 24, 28, 42, 47, 51; 2, 3, 12, 21, 31, 40, 49, 50 1, 25, 31, 84, 87, 134, 158, 182, 198; 2, 18, 42, 66, 113, 116, 169, 175, 199 1, 13, 126, 214, 215, 413, 414, 502, 615, 627; 6, 7, 134, 183, 243, 385, 445, 494, 621, 622 1, 4, 4; 2, 2, 5 is an ideal multigrade of degree 2 as 1^1 + 4^1 + 4^1 = 9 = 2^1 + 2^1 + 5^1 and 1^2 + 4^2 + 4^2 = 33 = 2^2 + 2^2 + 5^2.
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, pp. 162-165.
- L. E. Dickson, History of the theory of numbers, vol. II: Diophantine Analysis, reprint, Chelsea, New York, 1966, pp. 705-716.
- R. K. Guy, Unsolved Problems in Number Theory, D1.
- G. H. Hardy and E. M. Wright, "The Four-Square Theorem" and "The Problem of Prouhet and Tarry: The Number P(k,j)." §20.5 and 21.9 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 302-306 and 328-329, 1979.
Links
- P. Borwein, Computational Excursions in Analysis and Number Theory, Springer, 2002, pp. 85-95.
- Peter Borwein, Petr Lisonek and Colin Percival, Computational investigations of the Prouhet-Tarry-Escott Problem,
- Math. Comp., 72 (2003), 2063-2070.
- T. Piezas III, Equal Sums of Like Powers and the Prouhet-Tarry-Escott (PTE) Problem
- T. Piezas III and E. W. Weisstein, Multigrade Equation, MathWorld
- C. Rivera, Puzzle 65.- Multigrade Relations, The Prime Puzzles & Problems Connection
- Chen Shuwen, Equal Sums of Like Powers
- Chen Shuwen, The Prouhet-Tarry-Escott Problem
- C. Starr, Notes on Listener Crossword 4595 by Elap, The Mathematical Gazette (July 2021), Vol. 105, Issue 563, 291-298.
- Wikipedia, Prouhet-Tarry-Escott problem
- Wikipedia (French), Problème de Prouhet-Tarry-Escott
Crossrefs
Formula
a(n^2 + n - 1) = 1 or 0.
Comments