A362047 Numbers whose prime indices satisfy: (maximum) - (minimum) = (mean).
10, 30, 39, 90, 98, 99, 100, 115, 259, 270, 273, 300, 490, 495, 517, 663, 665, 793, 810, 900, 1000, 1083, 1241, 1421, 1495, 1521, 1691, 1911, 2058, 2079, 2125, 2145, 2369, 2430, 2450, 2475, 2662, 2700, 2755, 2821, 3000, 3277, 4247, 4495, 4921, 5587, 5863, 6069
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 10: {1,3} 30: {1,2,3} 39: {2,6} 90: {1,2,2,3} 98: {1,4,4} 99: {2,2,5} 100: {1,1,3,3} 115: {3,9} 259: {4,12} 270: {1,2,2,2,3} 273: {2,4,6} 300: {1,1,2,3,3} The prime indices of 490 are {1,3,4,4}, with minimum 1, maximum 4, and mean 3, and 4-1 = 3, so 490 is in the sequence.
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Max@@prix[#]-Min@@prix[#]==Mean[prix[#]]&]
-
Python
from itertools import count, islice from sympy import primepi, factorint def A362047_gen(startvalue=2): # generator of terms >= startvalue return filter(lambda n:(primepi(max(f:=factorint(n)))-primepi(min(f)))*sum(f.values())==sum(primepi(i)*j for i, j in f.items()),count(max(startvalue,2))) A362047_list = list(islice(A362047_gen(),20)) # Chai Wah Wu, Apr 13 2023
Comments