A362051 Number of integer partitions of 2n without a nonempty initial consecutive subsequence summing to n.
1, 1, 2, 6, 11, 27, 44, 93, 149, 271, 432, 744, 1109, 1849, 2764, 4287, 6328, 9673, 13853, 20717, 29343, 42609, 60100, 85893, 118475, 167453, 230080, 318654, 433763, 595921, 800878, 1090189, 1456095, 1957032, 2600199, 3465459, 4558785, 6041381, 7908681
Offset: 0
Keywords
Examples
The a(1) = 1 through a(4) = 11 partitions: (2) (4) (6) (8) (31) (42) (53) (51) (62) (222) (71) (411) (332) (2211) (521) (611) (3221) (3311) (5111) (32111) The partition y = (3,2,1,1,1) has nonempty initial consecutive subsequences (3,2,1,1,1), (3,2,1,1), (3,2,1), (3,2), (3), with sums 8, 7, 6, 5, 3. Since 4 is missing, y is counted under a(4).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[2n],!MemberQ[Accumulate[#],n]&]],{n,0,15}]
Comments