A362060 Numbers k such that the digits of k are a subsequence of the digits of prime(k).
7, 1491, 1723, 4437, 5789, 5893, 6151, 6331, 6347, 6455, 6456, 6457, 6459, 6460, 6466, 6469, 6491, 6501, 6513, 6523, 6581, 6663, 6931, 7817, 9551, 12083, 15103, 23071, 24833, 107647, 115259, 303027, 440999, 968819, 5517973, 27737957, 93230839, 95929941, 96567161
Offset: 1
Examples
a(1) = 7 is a term because the digits of 7 form a subsequence of those of prime(7) = 17.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..54
Programs
-
Python
from sympy import sieve def ok(n): p = sieve[n] while n and p: if n%10 == p%10: n //= 10 p //= 10 return n == 0 print([k for k in range(1, 10**6) if ok(k)]) # Michael S. Branicky, Apr 06 2023
-
Python
from sympy import prime, nextprime from itertools import count, islice def A362060_gen(startvalue=1): # generator of terms >= startvalue p = prime(max(startvalue,1)) for k in count(max(startvalue,1)): c = iter(str(p)) if all(map(lambda b:any(map(lambda a:a==b,c)),str(k))): yield k p = nextprime(p) A362060_list = list(islice(A362060_gen(),20)) # Chai Wah Wu, Apr 07 2023
Extensions
a(36)-a(39) from Michael S. Branicky, Apr 06 2023