cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362067 Sum of successive Fibonacci numbers F(n) : a(n) = Sum_{k = 0..n} F(n+k).

Original entry on oeis.org

0, 2, 6, 18, 50, 136, 364, 966, 2550, 6710, 17622, 46224, 121160, 317434, 831430, 2177322, 5701290, 14927768, 39083988, 102327390, 267903350, 701391022, 1836283246, 4807480608, 12586194000, 32951158706, 86267374854, 225851115906, 591286215650, 1548007923880
Offset: 0

Views

Author

Philippe Deléham, Apr 07 2023

Keywords

Examples

			a(n) are the row sums of the triangle T(n,k) (A199334):
  0;
  1, 1;
  1, 2,  3;
  2, 3,  5,  8;
  3, 5,  8, 13, 21;
  5, 8, 13, 21, 34, 55;
  ...
T(n,k) = T(n,k-1) + T(n-1, k-1); T(n,0) = A000045(n).
		

Crossrefs

Programs

  • Mathematica
    A362067[n_] := Fibonacci[n+1]*(LucasL[n+1] - 1); Array[A362067, 50, 0] (* or *)
    LinearRecurrence[{4, -3, -2, 1}, {0, 2, 6, 18}, 50] (* Paolo Xausa, Jun 10 2024 *)

Formula

a(n) = 4*a(n-1)-3*a(n-2)-2*a(n-3)+a(n-4), a(0)=0, a(1)=2, a(2)=6, a(3)=18.
G.f.: 2*x*(1-x)/((1-3*x+x^2)*(1-x-x^2)).
a(n) = A000045(2n+2) - A000045(n+1).
a(n) = 2 * A094292(n+1). - Alois P. Heinz, Apr 07 2023
a(n) = A000045(n+1)*(A000032(n+1) - 1). - Paolo Xausa, Jun 10 2024