A362070 Let m_min(n, k) be the smallest m such that n divides Product_{t=1..m} RisingFactorial(t, k). a(n) = Sum_{r=1..K(n)} m_min(n, r), where K(n) is the Kempner number A002034(n).
1, 3, 6, 9, 15, 6, 28, 10, 16, 15, 66, 9, 91, 28, 15, 16, 153, 16, 190, 15, 28, 66, 276, 10, 33, 91, 29, 28, 435, 15, 496, 24, 66, 153, 28, 16, 703, 190, 91, 15, 861, 28, 946, 66, 18, 276, 1128, 16, 54, 33, 153, 91, 1431, 29, 66, 28, 190
Offset: 1
Keywords
Examples
a(18) = 16 because: - for r = 1: 18 does not divide (1), (1)*(2), (1)*(2)*(3), (1)*(2)*(3)*(4), (1)*(2)*(3)*(4)*(5) and divides (1)*(2)*(3)*(4)*(5)*(6), then m_min(18, 1) = 6 = A002034(18) = K(18); - for r = 2: 18 does not divide (1*2), (1*2)*(2*3) and divides (1*2)*(2*3)*(3*4), then m_min(18, 2) = 3; - for r = 3: 18 does not divide (1*2*3) and divides (1*2*3)*(2*3*4), then m_min(18, 3) = 2; - for r = 4: 18 does not divide (1*2*3*4) and divides (1*2*3*4)*(2*3*4*5), then m_min(18, 4) = 2; - for r = 5: 18 does not divide (1*2*3*4*5) and divides (1*2*3*4*5)*(2*3*4*5*6), then m_min(18, 5) = 2; - for r = 6 = K(18): 18 divides (1*2*3*4*5*6), then m_min(18, 6) = 1, hence a(18) = 6 + 3 + 2 + 2 + 2 + 1 = 16.
Links
- J. Sondow and E. W. Weisstein, MathWorld: Smarandache Function
Programs
-
Maxima
K(u):=(b:1, for i:1 while mod(b,u)#0 do (c:i, b:b*(i+1)), c+1); a(n):=(s:0, for r:2 thru K(n)-1 do (z:product(j,j,1,r), for q:1 while mod(z,n)#0 do (z:z*product(y,y,q+1,q+r),m:q+1),s:s+m),s+K(n)+1); makelist(a(n),n,2,100);
Formula
a(1) = 1.
a(p) = p*(p + 1)/2 for p prime.
a(p_1*p_2*...*p_u) = p_u*(p_u + 1)/2, where p_i's are distinct primes and p_1 < p_2 < ... < p_u.
a(P) = P, where P is a perfect number.
a(p*(p + 1)/2) = p*(p + 1)/2 for p prime.
a(n!) = 3*n + (gpf(n!)^2 - 5*gpf(n!))/2 for n <> 4.
Comments