cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362077 a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number that has not yet appeared that is a multiple of Omega(a(n-1)).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 15, 14, 16, 20, 18, 21, 22, 24, 28, 27, 30, 33, 26, 32, 5, 7, 11, 13, 17, 19, 23, 25, 34, 36, 40, 44, 39, 38, 42, 45, 48, 35, 46, 50, 51, 52, 54, 56, 60, 64, 66, 57, 58, 62, 68, 63, 69, 70, 72, 55, 74, 76, 75, 78, 81, 80, 65, 82, 84, 88, 92, 87, 86, 90, 96, 102, 93
Offset: 1

Views

Author

Scott R. Shannon, Apr 08 2023

Keywords

Comments

Other than the first three terms the only other primes in the first 500000 terms are the consecutive terms a(24)..a(30) = 5, 7, 11, 13, 17, 19, 23. It is unknown if more exist.
In the same range the fixed points are 1, 2, 3, 4, and 48559, although it is possible more exist.

Examples

			a(4) = 4 as Omega(a(3)) = A001222(3) = 1, and 4 is the smallest unused number that is a multiple of 1.
a(10) = 15 as Omega(a(9)) = A001222(12) = 3, and 15 is the smallest unused number that is a multiple of 3.
		

Crossrefs

Programs

  • Python
    from sympy import primeomega
    from itertools import count, islice
    def A362077_gen(): # generator of terms
        a, b = {1,2}, 2
        yield from (1,2)
        while True:
            for b in count(p:=primeomega(b),p):
                if b not in a:
                    yield b
                    a.add(b)
                    break
    A362077_list = list(islice(A362077_gen(),20)) # Chai Wah Wu, Apr 11 2023