A362149 Decimal expansion of K, a constant arising in the analysis of the binary Euclidean algorithm.
7, 0, 5, 9, 7, 1, 2, 4, 6, 1, 0, 1, 9, 1, 6, 3, 9, 1, 5, 2, 9, 3, 1, 4, 1, 3, 5, 8, 5, 2, 8, 8, 1, 7, 6, 6, 6, 6, 7, 7
Offset: 0
Examples
0.7059712461019163915293141358528817666677...
References
- Richard P. Brent, Further analysis of the binary Euclidean algorithm, Programming Research Group technical report TR-7-99, Oxford University (1999) (see also the arXiv link).
- Steven R. Finch, Mathematical Constants, Cambridge University Press, New York, NY, 2003, p. 158.
- Donald E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd edition, Addison-Wesley, 1998, Sect. 4.5.2, pp. 348-353.
Links
- Richard P. Brent, Further analysis of the binary Euclidean algorithm, arXiv:1303.2772 [cs.DS], 1999, p. 12.
- Ian D. Morris, A rigorous version of R. P. Brent's model for the binary Euclidean algorithm, Advances in Mathematics, Vol. 290, 26 Feb. 2016, pp. 73-143.
- Brigitte Vallée, Dynamics of the Binary Euclidean Algorithm: Functional Analysis and Operators, Algorithmica 22 (1998), pp. 660-685.
- Wikipedia, Binary GCD algorithm.
Comments