A362198 a(n) = number of isogeny classes of abelian surfaces over the finite field of order prime(n).
35, 63, 129, 207, 401, 513, 765, 897, 1193, 1683, 1861, 2425, 2821, 3031, 3461, 4139, 4861, 5109, 5877, 6409, 6683, 7521, 8099, 8987, 10223, 10865, 11185, 11839, 12173, 12849, 15301, 16031, 17143, 17519, 19441, 19833, 21027, 22239, 23065, 24317, 25589, 26019, 28203, 28647, 29545, 29993
Offset: 1
Keywords
Examples
For n = 1, the a(1) = 35 possible isogeny classes correspond to the following 35 possible Hasse-Weil zeta functions of abelian surfaces over F_2: 4x^4 - 8x^3 + 8x^2 - 4x + 1, 4x^4 - 6x^3 + 5x^2 - 3x + 1, 4x^4 - 6x^3 + 6x^2 - 3x + 1, 4x^4 - 4x^3 + 2x^2 - 2x + 1, 4x^4 - 4x^3 + 3x^2 - 2x + 1, 4x^4 - 4x^3 + 4x^2 - 2x + 1, 4x^4 - 4x^3 + 5x^2 - 2x + 1, 4x^4 - 2x^3 - x^2 - x + 1, 4x^4 - 2x^3 - x + 1, 4x^4 - 2x^3 + x^2 - x + 1, 4x^4 - 2x^3 + 2x^2 - x + 1, 4x^4 - 2x^3 + 3x^2 - x + 1, 4x^4 - 2x^3 + 4x^2 - x + 1, 4x^4 - 4x^2 + 1, 4x^4 - 3x^2 + 1, 4x^4 - 2x^2 + 1, 4x^4 - x^2 + 1, 4x^4 + 1, 4x^4 + x^2 + 1, 4x^4 + 2x^2 + 1, 4x^4 + 3x^2 + 1, 4x^4 + 4x^2 + 1, 4x^4 + 2x^3 - x^2 + x + 1, 4x^4 + 2x^3 + x + 1, 4x^4 + 2x^3 + x^2 + x + 1, 4x^4 + 2x^3 + 2x^2 + x + 1, 4x^4 + 2x^3 + 3x^2 + x + 1, 4x^4 + 2x^3 + 4x^2 + x + 1, 4x^4 + 4x^3 + 2x^2 + 2x + 1, 4x^4 + 4x^3 + 3x^2 + 2x + 1, 4x^4 + 4x^3 + 4x^2 + 2x + 1, 4x^4 + 4x^3 + 5x^2 + 2x + 1, 4x^4 + 6x^3 + 5x^2 + 3x + 1, 4x^4 + 6x^3 + 6x^2 + 3x + 1, 4x^4 + 8x^3 + 8x^2 + 4x + 1.
Links
- Robin Visser, Table of n, a(n) for n = 1..1000
- S. A. DiPippo and E. W. Howe, Real polynomials with all roots on the unit circle and abelian varieties over finite fields, arXiv:math/9803097 [math.NT], 1998-2000.
- T. Dupuy, K. Kedlaya, D. Roe, and C. Vincent, Isogeny Classes of Abelian Varieties over Finite Fields in the LMFDB, arXiv:2003.05380 [math.NT], 2020.
- D. W. Farmer, S. Koutsoliotas, and S. Lemurell, Varieties via their L-functions, J. Number Theory 196 (2019), 364-380.
- LMFDB, Abelian variety count results.
- W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521-560.
Programs
-
Sage
from sage.rings.polynomial.weil.weil_polynomials import WeilPolynomials def a(n): p = Primes()[n-1] return len(list(WeilPolynomials(4,p)))
-
Sage
def a(n): R.
= PolynomialRing(CC) num_solutions = 0 p = Primes()[n-1] for Cp in range(ceil(p+1-4*sqrt(p)), floor(p+1+4*sqrt(p))+1): for Cp2 in range(ceil(p^2+1-4*p), floor(p^2+1+4*p)+1): a2 = (Cp^2 + Cp2 + 2*p*(1-Cp) - 2*Cp) if a2%2 != 0: continue L_poly = 1 + (Cp-p-1)*x + a2/2*x^2 + p*(Cp-p-1)*x^3 + p^2*x^4 for r in L_poly.roots(): if (abs(abs(r[0]) - 1/sqrt(p)) > 1e-12): break else: num_solutions += 1 return num_solutions
Formula
a(n) ~ (32/3) * prime(n)^(3/2).
Comments