A362201 a(n) = number of isogeny classes of dimension 3 abelian varieties over the finite field of order prime(n).
215, 677, 2953, 7979, 30543, 50371, 112283, 156589, 277517, 555843, 678957, 1153875, 1569637, 1810805, 2364089, 3389675, 4675707, 5167277, 6846631, 8147047, 8855295, 11222313, 13014767, 16045439, 20772343, 23449327, 24870063, 27880975, 29473619, 32839031, 46617799, 51162221
Offset: 1
Keywords
Links
- Robin Visser, Table of n, a(n) for n = 1..50
- S. A. DiPippo and E. W. Howe, Real polynomials with all roots on the unit circle and abelian varieties over finite fields, arXiv:math/9803097 [math.NT], 1998-2000.
- T. Dupuy, K. Kedlaya, D. Roe, and C. Vincent, Isogeny Classes of Abelian Varieties over Finite Fields in the LMFDB, arXiv:2003.05380 [math.NT].
- S. Haloui, The characteristic polynomials of abelian varieties of dimensions 3 over finite fields, arXiv:1003.0374 [math.AG], 2020.
- LMFDB, Abelian variety count results.
- W. C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4) 2 (1969), 521-560.
Programs
-
Sage
from sage.rings.polynomial.weil.weil_polynomials import WeilPolynomials def a(n): p = Primes()[n-1] return len(list(WeilPolynomials(6, p)))
-
Sage
def a(n): R.
= PolynomialRing(CC) num_solutions = 0 p = Primes()[n-1] for a1 in range(ceil(-6*sqrt(p)), floor(6*sqrt(p))+1): for a2 in range(ceil(-15*p), floor(15*p)+1): for a3 in range(ceil(-20*p*sqrt(p)), floor(20*p*sqrt(p))+1): L_poly = 1+a1*x+a2*x^2+a3*x^3+p*a2*x^4+p^2*a1*x^5+p^3*x^6 for r in L_poly.roots(): if (abs(abs(r[0]) - 1/sqrt(p)) > 1e-12): break else: num_solutions += 1 return num_solutions
Formula
a(n) ~ (1024/45) * prime(n)^3.
Comments