cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362201 a(n) = number of isogeny classes of dimension 3 abelian varieties over the finite field of order prime(n).

Original entry on oeis.org

215, 677, 2953, 7979, 30543, 50371, 112283, 156589, 277517, 555843, 678957, 1153875, 1569637, 1810805, 2364089, 3389675, 4675707, 5167277, 6846631, 8147047, 8855295, 11222313, 13014767, 16045439, 20772343, 23449327, 24870063, 27880975, 29473619, 32839031, 46617799, 51162221
Offset: 1

Views

Author

Robin Visser, Apr 10 2023

Keywords

Comments

Two abelian varieties over a finite field are isogenous if and only if their Hasse-Weil zeta functions coincide.
Thus a(n) is the number of degree 6 integer polynomials with leading coefficient prime(n)^3 and whose (complex) roots all have absolute value 1/sqrt(prime(n)).

Crossrefs

Programs

  • Sage
    from sage.rings.polynomial.weil.weil_polynomials import WeilPolynomials
    def a(n):
        p = Primes()[n-1]
        return len(list(WeilPolynomials(6, p)))
    
  • Sage
    def a(n):
        R. = PolynomialRing(CC)
        num_solutions = 0
        p = Primes()[n-1]
        for a1 in range(ceil(-6*sqrt(p)), floor(6*sqrt(p))+1):
            for a2 in range(ceil(-15*p), floor(15*p)+1):
                for a3 in range(ceil(-20*p*sqrt(p)), floor(20*p*sqrt(p))+1):
                    L_poly = 1+a1*x+a2*x^2+a3*x^3+p*a2*x^4+p^2*a1*x^5+p^3*x^6
                    for r in L_poly.roots():
                        if (abs(abs(r[0]) - 1/sqrt(p)) > 1e-12):
                            break
                    else:
                        num_solutions += 1
        return num_solutions

Formula

a(n) ~ (1024/45) * prime(n)^3.