A362208 Irregular triangle read by rows: T(n, k) is the number of compositions (ordered partitions) of n into exactly k distinct parts between the members of [k^2].
1, 0, 0, 2, 0, 2, 0, 4, 0, 2, 6, 0, 2, 6, 0, 0, 12, 0, 0, 18, 0, 0, 24, 24, 0, 0, 30, 24, 0, 0, 42, 48, 0, 0, 42, 72, 0, 0, 48, 120, 0, 0, 48, 144, 120, 0, 0, 48, 216, 120, 0, 0, 42, 264, 240, 0, 0, 42, 360, 360, 0, 0, 30, 432, 600, 0, 0, 24, 552, 840, 0, 0, 18, 648, 1200, 720
Offset: 1
Examples
The irregular triangle begins: 1; 0; 0, 2; 0, 2; 0, 4; 0, 2, 6; 0, 2, 6; 0, 0, 12; 0, 0, 18; 0, 0, 24, 24; 0, 0, 30, 24; 0, 0, 42, 48; 0, 0, 42, 72; 0, 0, 48, 120; 0, 0, 48, 144, 120; ... T(7,3) = 6 since we have: 1+2+4, 1+4+2, 2+1+4, 2+4+1, 4+1+2, 4+2+1.
Crossrefs
Programs
-
Mathematica
Flatten[Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n,All,Range[k^2]], UnsameQ@@#&], Length[#]==k&]], {n, 21}, {k, Floor[(Sqrt[8n+1]-1)/2]}]] (* After Gus Wiseman in A072574 *)