cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A362206 Expansion of 1/(1 - x/(1-9*x)^(1/3)).

Original entry on oeis.org

1, 1, 4, 25, 181, 1399, 11212, 91936, 765805, 6452449, 54841438, 469306102, 4038193870, 34903997029, 302828905471, 2635745917759, 23003622046900, 201241080558652, 1764149626139119, 15493365042402772, 136288275628625410, 1200600389345625754
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[9^(n - k)*Binomial[n - 2*k/3 - 1, n - k], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Feb 19 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-x/(1-9*x)^(1/3)))

Formula

a(n) = Sum_{k=0..n} (-9)^k * binomial(-(n-k)/3,k) = Sum_{k=0..n} 9^(n-k) * binomial(n-2*k/3-1,n-k).
a(n) ~ (1-9*r)^(1/3) * (6 - 18*r + r^2) / (109 * r^n), where r = 0.1109593191262346... is the root of the equation r*(9 + r^2) = 1. - Vaclav Kotesovec, Feb 19 2024

A373543 Expansion of 1/(1 - x/(1 - 9*x^2)^(2/3)).

Original entry on oeis.org

1, 1, 1, 7, 13, 64, 151, 634, 1693, 6514, 18688, 68239, 204631, 722920, 2230498, 7711216, 24246229, 82612189, 263112874, 887565955, 2852058448, 9553983613, 30892668295, 102975387211, 334454025715, 1110899344549, 3619669508056, 11992016509234, 39164977065622
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, 9^k*binomial(2*n/3-k/3-1, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} 9^k * binomial(2*n/3-k/3-1,k).
a(n) == 1 (mod 3).

A373544 Expansion of 1/(1 - x/(1 - 9*x^3)^(2/3)).

Original entry on oeis.org

1, 1, 1, 1, 7, 13, 19, 70, 157, 280, 799, 1894, 3781, 9646, 23080, 49159, 119203, 283972, 627760, 1487095, 3518617, 7945561, 18620746, 43801447, 100117099, 233475802, 546859390, 1258634440, 2928668632, 6839770279, 15804569341, 36739434904, 85640217781, 198337427839
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, 9^k*binomial(2*n/3-k-1, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} 9^k * binomial(2*n/3-k-1,k).
a(n) == 1 (mod 3).

A382516 Expansion of 1/(1 - x/(1 - 9*x)^(4/3)).

Original entry on oeis.org

1, 1, 13, 151, 1693, 18688, 204631, 2230498, 24246229, 263112874, 2852058448, 30892668295, 334454025715, 3619669508056, 39164977065622, 423695451762664, 4583082589819489, 49570596449054509, 536121822834121354, 5798064369702626227, 62702959640721355228
Offset: 0

Views

Author

Seiichi Manyama, Mar 30 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 9^(n-k)*binomial(n+k/3-1, n-k));

Formula

a(n) = Sum_{k=0..n} 9^(n-k) * binomial(n+k/3-1,n-k).
D-finite with recurrence (n-1)*(n-2)*a(n) -3*(n-2)*(17*n-35)*a(n-1) +27*(39*n^2-197*n+252)*a(n-2) +2*(-5468*n^2+32199*n-46873)*a(n-3) +6*(9115*n^2-56514*n+77702)*a(n-4) +54*(-1094*n^2-359*n+28901)*a(n-5) +54*(-9846*n^2+134559*n-449254)*a(n-6) +177147*(3*n-19)*(3*n-20)*a(n-7)=0. - R. J. Mathar, Mar 31 2025

A382517 Expansion of 1/(1 - x/(1 - 9*x)^(5/3)).

Original entry on oeis.org

1, 1, 16, 211, 2611, 31426, 373099, 4397527, 51623530, 604629688, 7072089076, 82652922457, 965513250832, 11275328397061, 131649767277064, 1536953772789256, 17941954844917198, 209439428952580837, 2444747948094707815, 28536537876362681194, 333091044353156790346
Offset: 0

Views

Author

Seiichi Manyama, Mar 30 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 9^(n-k)*binomial(n+2*k/3-1, n-k));

Formula

a(n) = Sum_{k=0..n} 9^(n-k) * binomial(n+2*k/3-1,n-k).
D-finite with recurrence (n-1)*(n-2)*a(n) -3*(19*n-37)*(n-2)*a(n-1) +27*(49*n^2-233*n+278)*a(n-2) +2*(-7655*n^2+39732*n-47656)*a(n-3) +3*(25519*n^2-98445*n-28306)*a(n-4) +54*(2552*n^2-69623*n+281314)*a(n-5) +27*(-137799*n^2+1870137*n-6193006)*a(n-6) +177147*(99*n^2-1323*n+4418)*a(n-7) -3188646*(3*n-20)*(3*n-22)*a(n-8)=0. - R. J. Mathar, Apr 02 2025
Showing 1-5 of 5 results.