cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368639 Number of lattice paths from (0,0) to (n,n) using steps (i,j) with i,j>=0 and gcd(i,j)=1.

Original entry on oeis.org

1, 3, 17, 111, 757, 5321, 38131, 276913, 2031075, 15011373, 111618559, 834026649, 6257264575, 47105424671, 355648865425, 2691925368489, 20420008516447, 155197818599687, 1181563534890855, 9009291052956319, 68788955737056469, 525876413869285467
Offset: 0

Views

Author

Alois P. Heinz, Jan 01 2024

Keywords

Examples

			a(1) = 3: (00)(10)(11), (00)(01)(11), (00)(11).
		

Crossrefs

Cf. A362242.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(min(n, k)=0, 1, add(add(
          `if`(igcd(i, j)=1, b(n-i, k-j), 0), j=0..k), i=0..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..21);

Formula

a(n) = A362242(2n,n).
a(n) mod 2 = 1.
a(n) ~ c * d^n / sqrt(n), where d = 7.83243076186533979978704688382432500791136... and c = 0.4087157525553882018687231317140076547941617894... - Vaclav Kotesovec, Jan 13 2024

A368672 Total number of lattice paths from (0,0) to (k,n-k) for k=0..n using steps (i,j) with i,j>=0 and gcd(i,j)=1.

Original entry on oeis.org

1, 2, 5, 14, 39, 110, 307, 860, 2407, 6736, 18851, 52758, 147651, 413224, 1156469, 3236546, 9057955, 25350028, 70945807, 198552344, 555678123, 1555147480, 4352310421, 12180584958, 34089170027, 95403588336, 267001063969, 747242000068, 2091267346883, 5852721227868
Offset: 0

Views

Author

Alois P. Heinz, Jan 02 2024

Keywords

Crossrefs

Row sums of A362242.
Cf. A059841.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(min(n, k)=0, 1, add(add(
          `if`(igcd(i, j)=1, b(n-i, k-j), 0), j=0..k), i=0..n))
        end:
    a:= n-> add(b(k, n-k), k=0..n):
    seq(a(n), n=0..29);

Formula

a(n) mod 2 = 1 - (n mod 2) = A059841(n).
a(n) ~ c * d^n, where d = 2.798648023933224047287803536948757710187420348758496337690531870498937575... and c = 0.639525188357518889842205998775477309094300590250850025271938769053628196... - Vaclav Kotesovec, Jan 13 2024
Showing 1-2 of 2 results.