cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A362245 Expansion of e.g.f. 1/(1 - x * exp(x * (exp(x) - 1))).

Original entry on oeis.org

1, 1, 2, 12, 84, 680, 6750, 78372, 1035608, 15402816, 254672730, 4631221100, 91872810612, 1974481960464, 45698618329910, 1133221107064620, 29974735063385520, 842413032202481792, 25067919890384214066, 787394937539847359052, 26034146454319615550540
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*exp(x*(exp(x)-1)))))

Formula

a(n) = n! * Sum_{i=0..n} Sum_{j=0..n-i} i^j * Stirling2(n-i-j,j)/(n-i-j)!.
a(n) ~ n! / ((1 - r + exp(r)*r*(1 + r)) * r^n), where r = 0.60489399462026660841486230237937164068755854932856922096976397761... is the root of the equation exp(r*(exp(r)-1)) = 1/r. - Vaclav Kotesovec, Apr 13 2023

A362247 Expansion of e.g.f. exp(x * exp(x * (exp(x) - 1))).

Original entry on oeis.org

1, 1, 1, 7, 37, 201, 1531, 12433, 112729, 1158769, 12920311, 157007841, 2063354437, 29052921769, 436908104179, 6981843029281, 118083965782321, 2106973566128865, 39538081855597807, 778216030845226561, 16027517577057849181, 344635879922587951321
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(x*(exp(x)-1)))))

Formula

a(n) = n! * Sum_{i=0..n} ( Sum_{j=0..n-i} i^j * Stirling2(n-i-j,j)/(n-i-j)! )/i!.

A362246 Expansion of e.g.f. exp(x * exp(-x * (exp(-x) - 1))).

Original entry on oeis.org

1, 1, 1, 7, 13, 81, 391, 1093, 18537, 577, 1013131, -54339, 39429853, 424162753, -4130181873, 137131757701, -1733851435439, 29708533549953, -337960798083053, 3890007865959661, -11844138798049659, -662440203084569279, 30135319297423429783
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-x*(exp(-x)-1)))))

Formula

a(n) = n! * Sum_{i=0..n} (-1)^(n-i) * ( Sum_{j=0..n-i} i^j * Stirling2(n-i-j,j)/(n-i-j)! )/i!.

A362273 Expansion of e.g.f. 1/(1 - x * exp(-x * exp(-x))).

Original entry on oeis.org

1, 1, 0, 3, 8, -15, 264, -35, -1968, 87633, -499600, 2375901, 48964200, -830424023, 9884072184, -11730111315, -1407884197216, 36601422429345, -416600839315872, 191233500832189, 136472124267672120, -3513232740127917639, 46653752740647748520
Offset: 0

Views

Author

Seiichi Manyama, Apr 13 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*exp(-x*exp(-x)))))

Formula

a(n) = n! * Sum_{i=0..n} (-1)^(n-i) * Sum_{j=0..n-i} i^j * j^(n-i-j) / (j! * (n-i-j)!).
Showing 1-4 of 4 results.