A362249 Point number on a 4-arm square spiral of point n on the East arm scaled up by steps of that point itself.
1, 4, 19, 16, 13, 64, 149, 58, 81, 70, 139, 324, 583, 268, 217, 256, 233, 244, 569, 1024, 1609, 916, 421, 566, 625, 586, 461, 884, 1591, 2500, 3611, 2324, 1323, 1000, 1213, 1296, 1237, 1048, 1269, 2284, 3589, 5184, 7069, 4924, 3169, 1804, 1997, 2290, 2401, 2318, 2053, 1724, 3103, 4876
Offset: 1
Keywords
Examples
Explanatory diagrams for n = 5 and n = 10 are shown in the Links.
Links
- Tamas Sandor Nagy, Illustration for a(5).
- Tamas Sandor Nagy, Illustration for a(10).
- Thomas Scheuerle, Illustration of tracing the intersections in 2D. It shows all four spirals with different colors. The green curve connects the intersection points where the rotated and scaled spiral intersects which one of the base spirals. The intersections at the cases of a(A002061(n)) are the local extreme values of the green curve. At a(n^2) our intersections are horizontally on the X axis.
- Thomas Scheuerle, The Cartesian distances of the intersections to the origin. At a(n^2) this distance equals n^2, local minima. At a(A002061(n)) we reach local maxima of A001844(n-1).
- Thomas Scheuerle, Plot of this sequence in polar coordinates. Angle = sqrt(n-1)*2*Pi, Radius = a(n).
Programs
-
MATLAB
function a = A362249( max_n ) E = [0 ; 0]; S = [0 ; 0]; W = [0 ; 0]; N = [0 ; 0]; V = [0 0]; for k = 1:4*max_n l = V(1+mod(k+1,2)); s = (-1)^floor(k/2); for m = l+(1*s):s:s*k V(1+mod(k+1,2)) = m; V2 = V(end:-1:1).*[-1 1]; N = [N V2']; E = [E V']; S = [S -V2']; W = [W -V']; end end for n = 2:max_n [th,r] = cart2pol(E(1,n), E(2,n)); rot = [cos(-th) -sin(-th); sin(-th) cos(-th)]; v = E(:,n)'*rot*r; jE = find(sum(abs([E(1,:)-v(1); E(2,:)-v(2)]),1) < 0.5); jS = find(sum(abs([S(1,:)-v(1); S(2,:)-v(2)]),1) < 0.5); jW = find(sum(abs([W(1,:)-v(1); W(2,:)-v(2)]),1) < 0.5); jN = find(sum(abs([N(1,:)-v(1); N(2,:)-v(2)]),1) < 0.5); a(n-1) = max([jE jS jW jN])-1; end end % Thomas Scheuerle, Apr 13 2023
-
PARI
x(n, k) = (n^2 + k^2 - 2*n*k^2 + k^4)/(1 + k^2/(n - k^2)^2) - (k^2*(n^2 + k^2 - 2*n*k^2 + k^4))/((n - k^2)^2*(1 + k^2/(n - k^2)^2)); y(n, k) = (2*k*n^2)/((n - k^2)*(1 + k^2/(n - k^2)^2)) + (2*k^3)/((n - k^2)*(1 + k^2/(n - k^2)^2)) - (4*k^3*n)/(n - k^2 + (n*k^2)/(n^2 - 2*n*k^2 + k^4) - k^4/(n^2 - 2*n*k^2 + k^4)) + (2*k^5)/((n - k^2)*(1 + k^2/(n - k^2)^2)); t(n) = {my(k = (sqrtint(4*n) + 1)\2); my(cy = abs(y(n,k))); my(cx = abs(x(n,k))); my(d = (cy > cx)); my(e = (n - k^2) < 0); return(max(cx,cy)^2+min(cx,cy)*(-1)^d*(-1)^e)}; a(n) = if(issquare(n), return(n^2), return(t(n)));
Comments