A362261 Maximum number of ways in which a set of integer-sided squares can tile an n X 3 rectangle, up to rotations and reflections.
1, 1, 1, 1, 2, 4, 8, 12, 22, 40, 73, 146, 292, 560, 1120, 2532, 5040, 10080, 22176, 44352, 88704, 192272, 384384, 768768, 1647360, 3294720, 6589440, 14003120, 28006240, 56012480, 126028080, 266053680, 532107360, 1182438400, 2483130720, 4966261440, 10925775168
Offset: 0
Keywords
Programs
-
Python
from math import comb def F(i,j,k): # total number of tilings using i, j, and 2*j+3*k squares of side lengths 3, 2, and 1, respectively return comb(i+j+k,i)*comb(j+k,j)*2**j def F0(i,j,k): # number of inequivalent tilings x = F(i,j,k) if j == 0: x += comb(i+k,i) # horizontal line of symmetry if i%2+j%2+k%2 <= 1: x += 2*F(i//2,j//2,k//2) # vertical line of symmetry or rotational symmetry return x//4 def A362261(n): return max(F0(i,j,n-3*i-2*j) for i in range(n//3+1) for j in range((n-3*i)//2+1))
Formula
a(n) >= A362144(n)/4.