cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362268 Numbers whose prime factors counted with multiplicity satisfy: (maximum) - (minimum) = (mean).

Original entry on oeis.org

20, 60, 180, 189, 400, 540, 1200, 1372, 1620, 2541, 2835, 3185, 3600, 4860, 5577, 6860, 8000, 10800, 14365, 14580, 16093, 23465, 24000, 28812, 32400, 34300, 34375, 35721, 40733, 42525, 43740, 46529, 72000, 78793, 97200, 123101, 131220, 135401, 139755, 144060
Offset: 1

Views

Author

Chai Wah Wu, Apr 13 2023

Keywords

Examples

			The terms together with their prime factors begin:
    20: [2, 2, 5]
    60: [2, 2, 3, 5]
   180: [2, 2, 3, 3, 5]
   189: [3, 3, 3, 7]
   400: [2, 2, 2, 2, 5, 5]
   540: [2, 2, 3, 3, 3, 5]
  1200: [2, 2, 2, 2, 3, 5, 5]
  1372: [2, 2, 7, 7, 7]
  1620: [2, 2, 3, 3, 3, 3, 5]
  2541: [3, 7, 11, 11]
  2835: [3, 3, 3, 3, 5, 7]
  3185: [5, 7, 7, 13]
  3600: [2, 2, 2, 2, 3, 3, 5, 5]
  4860: [2, 2, 3, 3, 3, 3, 3, 5]
The prime factors of 4860 are [2, 2, 3, 3, 3, 3, 3, 5], with minimum 2, maximum 5, and mean 3, and 5-2 = 3, so 4860 is in the sequence.
		

Crossrefs

Cf. A362047.

Programs

  • Mathematica
    mmmQ[n_]:=With[{pf=Flatten[PadRight[{},#[[2]],#[[1]]]&/@FactorInteger[n]]},Max[pf]-Min[pf]==Mean[pf]]; Select[Range[150000],mmmQ] (* Harvey P. Dale, Aug 13 2025 *)
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A362268_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:(max(f:=factorint(n))-min(f))*sum(f.values())==sum(map(prod,f.items())),count(max(startvalue,2)))
    A362268_list = list(islice(A362268_gen(),20))