cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362282 a(n) = n! * Sum_{k=0..floor(n/2)} (-n)^k * binomial(n-k,k)/(n-k)!.

Original entry on oeis.org

1, 1, -3, -17, 145, 1401, -19619, -267833, 5214273, 91975825, -2292948899, -49586832129, 1506939887377, 38595456391753, -1383612408628995, -40951481342092649, 1691614670048805121, 56809502720559644577, -2656760323700732460227, -99810124102484722532465
Offset: 0

Views

Author

Seiichi Manyama, Apr 14 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sqrt(lambertw(2*x^2)/2))/(1+lambertw(2*x^2))))

Formula

a(n) = A362277(n,2*n).
a(n) = n! * [x^n] exp(x - n*x^2).
E.g.f.: exp( sqrt( LambertW(2*x^2)/2 ) ) / (1 + LambertW(2*x^2)).