A362295 Sums of two Fibonacci numbers that are also sums of two squares.
0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 18, 26, 29, 34, 36, 37, 58, 68, 89, 90, 97, 144, 145, 146, 149, 157, 178, 233, 234, 241, 288, 377, 466, 521, 610, 612, 613, 754, 1000, 1021, 1042, 1076, 1220, 1597, 1600, 1602, 1618, 1741, 2592, 2597, 2605, 2817, 3194, 4181, 4194, 4325, 6770, 6773, 6778, 6786
Offset: 1
Keywords
Examples
a(5) = 5 is a term because 5 = 2 + 3 = A000045(3) + A000045(4) = 2^2 + 1^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..2500
Programs
-
Maple
ss:= proc(n) local F,t; F:= ifactors(n)[2]; andmap(t -> t[1] mod 4 <> 3 or t[2]::even, F) end proc: fibs:= map(combinat:-fibonacci, {$0..25}): N:= max(fibs): fib2:= {seq(seq(fibs[i]+fibs[j],i=1..j),j=1..nops(fibs))}: sort(convert(select(t -> t <= N and ss(t), fib2),list));
-
Mathematica
max = 150; (* max = 150 gives 1670 terms *) Join[{0, 1}, Select[Union[Total /@ Tuples[Fibonacci[Range[2, max]], {2}]], # <= Fibonacci[max] && SquaresR[2, #] != 0&]] (* Jean-François Alcover, Sep 29 2024, after Harvey P. Dale in A059389 *)
-
Python
from itertools import islice from sympy import factorint def A362295_gen(): # generator of terms yield from (0,1,2) a = [1,2] while True: b = a[-1]+a[-2] c = a[-1]<<1 flag = True for d in a: n = b+d if flag and n>=c: if n>c: f = factorint(c) if all(d & 3 != 3 or f[d] & 1 == 0 for d in f): yield c flag = False f = factorint(n) if all(d & 3 != 3 or f[d] & 1 == 0 for d in f): yield n a.append(b) A362295_list = list(islice(A362295_gen(),60)) # Chai Wah Wu, Apr 16 2023
Comments