cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362297 Array read by antidiagonals for k,n>=0: T(n,k) = number of tilings of a 2k X n rectangle using dominos and 2 X 2 right triangles.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 19, 7, 1, 1, 1, 97, 55, 19, 1, 1, 1, 508, 445, 472, 40, 1, 1, 1, 2683, 3625, 13249, 2023, 97, 1, 1, 1, 14209, 29575, 392299, 109771, 13249, 217, 1, 1, 1, 75316, 241375, 11877025, 6078148, 2102272, 66325, 508, 1, 1, 1, 399331, 1970125, 362823607, 338504101, 358815535, 22650721, 392299, 1159, 1
Offset: 0

Views

Author

Gerhard Kirchner, Apr 19 2023

Keywords

Comments

Triangles only occur as pairs forming 2 X 2 squares. Combining four triangles, a square with side sqrt(2) can be made, but this side is irrational and the square cannot be used for tiling. A pair of triangles is equivalent to a 2 X 2 square with a 180 degree rotation symmetry (generated by an ornament for example).

Examples

			Table begins:
n\k_0__1_____2_______3_________4___________5______________6
0:  1  1     1       1         1           1              1
1:  1  1     1       1         1           1              1
2:  1  4    19      97       508        2683          14209
3:  1  7    55     445      3625       29575         241375
4:  1 19   472   13249    392299    11877025      362823607
5:  1 40  2023  109771   6078148   338504101    18883136617
6:  1 97 13249 2102272 358815535 63483562159 11428502939791
		

Crossrefs

Formula

T(n,1) = A006130(n).
T(n,2) = A362298(n).
T(3,k) = A362299(k).