cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362299 Number of tilings of a 3 X 2n rectangle using dominos and 2 X 2 right triangles.

Original entry on oeis.org

1, 7, 55, 445, 3625, 29575, 241375, 1970125, 16080625, 131254375, 1071334375, 8744528125, 71375265625, 582584734375, 4755218359375, 38813412578125, 316805850390625, 2585857315234375, 21106485396484375, 172276994236328125, 1406172661416015625
Offset: 0

Views

Author

Gerhard Kirchner, Apr 19 2023

Keywords

Comments

Triangles only occur as pairs forming 2 X 2 squares. For program code and additional details, see A362297.

Examples

			a(1)=7:
   ___ _    _ ___    ___ _    _ ___    ___ _    _ ___    ___ _
  |  /| |  | |  /|  |\  | |  | |\  |  |___| |  | |___|  | | | |
  |/__|_|  |_|/__|  |__\|_|  |_|__\|  |___|_|  |_|___|  |_|_|_|
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, -15}, {1, 7}, 30] (* Paolo Xausa, Jul 20 2024 *)

Formula

a(n) = 10*a(n-1) - 15*a(n-2).
G.f.: (1 - 3*x)/(1 - 10*x + 15*x^2).
E.g.f.: exp(5*x)*(5*cosh(sqrt(10)*x) + sqrt(10)*sinh(sqrt(10)*x))/5. - Stefano Spezia, Apr 20 2023

A362298 Number of tilings of a 4 X n rectangle using dominos and 2 X 2 right triangles.

Original entry on oeis.org

1, 1, 19, 55, 472, 2023, 13249, 66325, 392299, 2088856, 11877025, 64803157, 362823607, 1998759703, 11123273896, 61509329983, 341492705365, 1891193243713, 10489893539203, 58127214942544, 322296397820593, 1786338231961609, 9903234373856059, 54893955008138983
Offset: 0

Views

Author

Gerhard Kirchner, Apr 19 2023

Keywords

Comments

Triangles only occur as pairs forming 2 X 2 squares. For program code and additional details, see A362297.

Examples

			a(2) = 19.
Partitions of a 2 X 2 square (triangles or dominos):
   ___    ___    ___    ___
  |  /|  |\  |  |___|  | | |
  |/__|  |__\|  |___|  |_|_|
       2t            2d
   ___ ___    ___ ___    ___ ___    _ ___ _    _______
  |2t |2t |  |2t |2d |  |2d |2t |  | |2t | |  |only d |
  |___|___|  |___|___|  |___|___|  |_|___|_|  |_______|
    4 ways +   4 ways +  4 ways  +   2 ways +  5 ways  = 19 ways
Only dominos: A005178(3) = 5.
		

Crossrefs

Column k=2 of A362297.

Programs

  • Mathematica
    LinearRecurrence[{4,18,-48,-42,99},{1,1,19,55,472},24] (* Stefano Spezia, Apr 20 2023 *)

Formula

a(n) = 4*a(n-1) + 18*a(n-2) - 48*a(n-3) - 42*a(n-4) + 99*a(n-5).
G.f.: (9*x^3-3*x^2-3*x+1)/(-99*x^5+42*x^4+48*x^3-18*x^2-4*x+1).
Showing 1-2 of 2 results.