A362298 Number of tilings of a 4 X n rectangle using dominos and 2 X 2 right triangles.
1, 1, 19, 55, 472, 2023, 13249, 66325, 392299, 2088856, 11877025, 64803157, 362823607, 1998759703, 11123273896, 61509329983, 341492705365, 1891193243713, 10489893539203, 58127214942544, 322296397820593, 1786338231961609, 9903234373856059, 54893955008138983
Offset: 0
Examples
a(2) = 19. Partitions of a 2 X 2 square (triangles or dominos): ___ ___ ___ ___ | /| |\ | |___| | | | |/__| |__\| |___| |_|_| 2t 2d ___ ___ ___ ___ ___ ___ _ ___ _ _______ |2t |2t | |2t |2d | |2d |2t | | |2t | | |only d | |___|___| |___|___| |___|___| |_|___|_| |_______| 4 ways + 4 ways + 4 ways + 2 ways + 5 ways = 19 ways Only dominos: A005178(3) = 5.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,18,-48,-42,99).
Programs
-
Mathematica
LinearRecurrence[{4,18,-48,-42,99},{1,1,19,55,472},24] (* Stefano Spezia, Apr 20 2023 *)
Formula
a(n) = 4*a(n-1) + 18*a(n-2) - 48*a(n-3) - 42*a(n-4) + 99*a(n-5).
G.f.: (9*x^3-3*x^2-3*x+1)/(-99*x^5+42*x^4+48*x^3-18*x^2-4*x+1).
Comments