A362299 Number of tilings of a 3 X 2n rectangle using dominos and 2 X 2 right triangles.
1, 7, 55, 445, 3625, 29575, 241375, 1970125, 16080625, 131254375, 1071334375, 8744528125, 71375265625, 582584734375, 4755218359375, 38813412578125, 316805850390625, 2585857315234375, 21106485396484375, 172276994236328125, 1406172661416015625
Offset: 0
Examples
a(1)=7: ___ _ _ ___ ___ _ _ ___ ___ _ _ ___ ___ _ | /| | | | /| |\ | | | |\ | |___| | | |___| | | | | |/__|_| |_|/__| |__\|_| |_|__\| |___|_| |_|___| |_|_|_|
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-15).
Programs
-
Mathematica
LinearRecurrence[{10, -15}, {1, 7}, 30] (* Paolo Xausa, Jul 20 2024 *)
Formula
a(n) = 10*a(n-1) - 15*a(n-2).
G.f.: (1 - 3*x)/(1 - 10*x + 15*x^2).
E.g.f.: exp(5*x)*(5*cosh(sqrt(10)*x) + sqrt(10)*sinh(sqrt(10)*x))/5. - Stefano Spezia, Apr 20 2023
Comments