cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362265 Indices m for which A362363(m) = 0, meaning the large spiral point in A362249 falls on the East base spiral.

Original entry on oeis.org

1, 2, 5, 6, 7, 9, 12, 15, 17, 18, 19, 20, 21, 23, 25, 27, 28, 30, 35, 37, 39, 40, 41, 42, 43, 45, 47, 49, 51, 52, 54, 56, 61, 63, 65, 67, 68, 69, 70, 71, 72, 73, 75, 77, 79, 81, 83, 86, 88, 90, 97, 99, 101, 103, 105, 106, 107, 108, 109, 110, 111, 113, 115, 117, 119, 121, 123, 125, 126, 128, 130
Offset: 1

Views

Author

Keywords

Comments

If m is a term then further terms can be found by writing m = s^2 + r such that s^2 is the square closest to m (and r is positive or negative). Then further terms are k = (t*s)^2 + t*r for odd t (but only sometimes even t).

Examples

			6 is a term since in A362249, its n=6 large spiral point 6 falls on its East base spiral.
		

Crossrefs

Formula

All numbers of the form (2*k+1)^2 will be found inside this sequence but not (2*k)^2.
All numbers of the form 4^k+2^k, 4*k^2+k and k > 0, 9*(2*k+1)^2-4*k-2, 9*k^2+3*k and k > 0, 16*(2*k+1)^2+2*k+1 will be found inside this sequence.

A362249 Point number on a 4-arm square spiral of point n on the East arm scaled up by steps of that point itself.

Original entry on oeis.org

1, 4, 19, 16, 13, 64, 149, 58, 81, 70, 139, 324, 583, 268, 217, 256, 233, 244, 569, 1024, 1609, 916, 421, 566, 625, 586, 461, 884, 1591, 2500, 3611, 2324, 1323, 1000, 1213, 1296, 1237, 1048, 1269, 2284, 3589, 5184, 7069, 4924, 3169, 1804, 1997, 2290, 2401, 2318, 2053, 1724, 3103, 4876
Offset: 1

Views

Author

Keywords

Comments

Coordinates x=A340944(n), y=A340945(n) are the East arm of a 4-arm square spiral whose arms together visit each integer point in the plane. Call these arms the base spirals.
Construct a large spiral by taking point n on the East spiral as a vector u and scaling up the East spiral by that amount (so first step at u, then turn 90 degrees and step by distance |u|, and so on).
Point n along the large spiral falls somewhere on one of the base spirals. It is point number a(n) on base spiral number A362363(n).
In complex numbers, the East spiral is S(n) = A340944(n) + A340945(n)*i, the scale is u = S(n), the large spiral is L(t) = u*S(t), and its point n is at L(n) = S(n)^2 = S(k)*i^arm where a(n) = k and A362363(n) = arm.

Examples

			Explanatory diagrams for n = 5 and n = 10 are shown in the Links.
		

Crossrefs

Programs

  • MATLAB
    function a  = A362249( max_n )
        E = [0 ; 0]; S = [0 ; 0]; W = [0 ; 0]; N = [0 ; 0]; V = [0 0];
        for k = 1:4*max_n
            l = V(1+mod(k+1,2)); s = (-1)^floor(k/2);
            for m = l+(1*s):s:s*k
                V(1+mod(k+1,2)) = m; V2 = V(end:-1:1).*[-1 1];
                N = [N V2']; E = [E V']; S = [S -V2']; W = [W -V'];
            end
        end
        for n = 2:max_n
            [th,r] = cart2pol(E(1,n), E(2,n));
            rot = [cos(-th) -sin(-th); sin(-th) cos(-th)];
            v = E(:,n)'*rot*r;
            jE = find(sum(abs([E(1,:)-v(1); E(2,:)-v(2)]),1) < 0.5);
            jS = find(sum(abs([S(1,:)-v(1); S(2,:)-v(2)]),1) < 0.5);
            jW = find(sum(abs([W(1,:)-v(1); W(2,:)-v(2)]),1) < 0.5);
            jN = find(sum(abs([N(1,:)-v(1); N(2,:)-v(2)]),1) < 0.5);
            a(n-1) = max([jE jS jW jN])-1;
        end
    end % Thomas Scheuerle, Apr 13 2023
  • PARI
    x(n, k) = (n^2 + k^2 - 2*n*k^2 + k^4)/(1 + k^2/(n - k^2)^2) - (k^2*(n^2 + k^2 - 2*n*k^2 + k^4))/((n - k^2)^2*(1 + k^2/(n - k^2)^2));
    y(n, k) = (2*k*n^2)/((n - k^2)*(1 + k^2/(n - k^2)^2)) + (2*k^3)/((n - k^2)*(1 + k^2/(n - k^2)^2)) - (4*k^3*n)/(n - k^2 + (n*k^2)/(n^2 - 2*n*k^2 + k^4) - k^4/(n^2 - 2*n*k^2 + k^4)) + (2*k^5)/((n - k^2)*(1 + k^2/(n - k^2)^2));
    t(n) =  {my(k = (sqrtint(4*n) + 1)\2); my(cy = abs(y(n,k))); my(cx = abs(x(n,k))); my(d = (cy > cx)); my(e = (n - k^2) < 0); return(max(cx,cy)^2+min(cx,cy)*(-1)^d*(-1)^e)};
    a(n) = if(issquare(n), return(n^2), return(t(n)));
    

Formula

A340944(a(n)) + i*A340945(a(n)) = (A340944(n) + i*A340945(n))^2 / i^A362363(n).
a(k^(2*n)) = k^(4*n).
a(4^n + 2^n) = 2^(4*n + 2).
a(A002061(n)) = 4*n^4 - 8*n^3 + 4*n^2 + 2*n - 1, for n > 0.
Showing 1-2 of 2 results.