A362364 a(n) is the product of the first n primes that are coprime to a(n-1); a(0) = 1.
1, 2, 15, 154, 3315, 67298, 2980185, 102091066, 6022953885, 319238763382, 24615812527995, 1654614510608906, 161405882746063215, 14284287070086685498, 1679105398207295625645, 166597640098421012963174, 24096841569672899523631395, 2989927846846361919650083778, 499069685749495422033929821845
Offset: 0
Keywords
Examples
a(0) = 1. a(1) = 2 is the least prime coprime to a(0). a(2) = 3*5 is the product of the two least primes coprime to a(1). a(3) = 2*7*11 is the product of the three least primes coprime to a(2). a(4) = 3*5*13*17 = 3315 is the product of the four least primes coprime to a(3).
Links
- Robert Israel, Table of n, a(n) for n = 0..315
Crossrefs
Programs
-
Maple
f:= proc(n) local i; if n::odd then 2 * mul(ithprime(4*i)*ithprime(4*i+1),i=1..(n-1)/2) else mul(ithprime(4*i-2)*ithprime(4*i-1),i=1..(n/2)) fi end proc: map(f, [$0..20]);
-
Python
from math import prod from sympy import prime def A362364(n): return prod(prime(i)*prime(i+1) for i in range(2+((n&1)<<1),(n<<1)-1,4))<<(n&1) # Chai Wah Wu, Apr 20 2023
Formula
If n is even, a(n) = Product_{i=1..n/2} prime(4*i-2)*prime(4*i-1).
If n is odd, a(n) = 2 * Product_{i=1..(n-1)/2} prime(4*i)*prime(4*i+1).
From Peter Munn, Apr 21 2023: (Start)
a(0) = 1, for n >= 1, a(n) = A002110(2n-1)/a(n-1).
(End)
Comments