A364312 Irregular triangle T read by rows, giving in row n the nonnegative coefficients of polynomials of height n and degree k (of decreasing powers), for k = 1, 2, ..., n-1, used for Cantor's counting of algebraic numbers, written for m = 1, 2, ..., A364313(n), for n >= 2, and for n = 1 the degree is k = 1.
1, 0, 1, 1, 2, 1, 1, 2, 1, 0, 1, 3, 1, 1, 3, 2, 0, 1, 1, 0, 2, 1, 1, 1, 4, 1, 1, 4, 3, 2, 2, 3, 3, 0, 1, 1, 0, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 5, 1, 1, 5, 4, 0, 1, 1, 0, 4, 3, 0, 2, 2, 0, 3, 3, 1, 1, 1, 3, 1, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 2
Offset: 1
Examples
The irregular triangle T, with entries T(n, m), begins: (increasing k >= 1 values are separated by ;) n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 1: [1, 0] 2: [1, 1] 3: [2, 1], [1, 2]; [1, 0, 1] 4: [3, 1], [1, 3]; [2, 0, 1], [1, 0, 2], [1, 1, 1] ... n = 5: [4, 1], [1, 4], [3, 2], [2, 3]; [3, 0, 1], [1, 0, 3], [2, 1, 1], [1, 2, 1], [1, 1, 2]; [2, 0, 0, 1], [1, 0, 0, 2], [1, 1, 0, 1], [1, 0, 1, 1]; [1, 0, 0, 0, 1] --------- n = 6: [5, 1], [1, 5]; [4, 0, 1], [1, 0, 4], [3, 0, 2], [2, 0, 3], [3, 1, 1], [1, 3, 1], [1, 1, 3], [2, 2, 1], [2, 1, 2], [1, 2, 2]; [3, 0, 0, 1], [1, 0, 0, 3], [2, 1, 0, 1], [2, 0, 1, 1], [1, 2, 0, 1], [1, 0, 2, 1], [1, 1, 0, 2], [1, 0, 1, 2], [1, 1, 1, 1]; [2, 0, 0, 0, 1], [1, 0, 0, 0, 2], [1, 1, 0, 0, 1], [1, 0, 1, 0, 1], [1, 0, 0, 1, 1] --------- n = 7: [6, 1], [1, 6], [5, 2], [2, 5], [4, 3], [3, 4]; [5, 0, 1], [1, 0, 5], [4, 1, 1], [1, 4, 1], [1, 1, 4], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 3, 2], [1, 2, 3]; [4, 0, 0, 1], [1, 0, 0, 4], [3, 0, 0, 2], [2, 0, 0, 3], [3, 1, 0, 1], [3, 0, 1, 1], [1, 3, 0, 1], [1, 0, 3, 1], [1, 1, 0, 3], [1, 0, 1, 3], [2, 2, 0, 1], [2, 0, 2, 1], [2, 1, 0, 2], [2, 0, 1, 2], [1, 2, 0, 2], [1, 0, 2, 2], [2, 1, 1, 1], [1, 2, 1, 1], [1, 1, 2, 1], [1, 1, 1, 2]; [3, 0, 0, 0, 1], [1, 0, 0, 0, 3], [2, 1, 0, 0, 1], [2, 0, 1, 0, 1], [2, 0, 0, 1, 1], [1, 2, 0, 0, 1], [1, 0, 2, 0, 1], [1, 0, 0, 2, 1], [1, 1, 0, 0, 2], [1, 0, 1, 0, 2], [1, 0, 0, 1, 2], [1, 1, 1, 0, 1], [1, 1, 0, 1, 1], [1, 0, 1, 1, 1]; [2, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 2], [1, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 1, 0, 1], [1, 0, 0, 0, 1, 1] ------- x^6 + 1 = (x^2 + 1)*(x^4 - x^2 + 1), hence no [1, 0, 0, 0, 0, 0, 1] recorded, because x^6 - 1 also factorizes. ... --------------------------------------------------------------------------- Polynomials: n = 4, degree k = 1: 3*x + 1, x + 3; k = 2: 2*x^2 + 1, x^2 + 2, x^2 + x + 1; k = 3: no entry [1, 0, 0, 1], because x^3 + 1 factorizes, as well as x^3 - 1. --------------------------------------------------------------------------- Height n = 4, degree k = 2, with signed polynomials: [2, 0, 1] for 2*x^2 + 1, 2*x^2 - 1, [1, 0, 2] for x^2 + 2, x^2 - 2, and [1, 1, 1] for x^2 + x + 1, x^2 + x - 1, x^2 - x + 1, x^2 - x - 1. The corresponding real algebraic numbers come in signed pairs only from 2*x^2 - 1, x^2 - 2, x^2 + x - 1, and x^2 - x - 1, namely, -sqrt(1/2), +sqrt(1/2), -sqrt(2), +sqrt(2), -phi = -A001622, phi - 1, and -(phi - 1), phi. So Cantor's phi (our Phi) is Phi(4, 2) = 8. Together with the four real k = 1 roots from the signed polynomials for [3, 1] and [1, 3] one finds Phi(4) = 12. See A362364.
Links
- Georg Cantor, Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, Journal f. d. reine u. angew. Math. 77 (1874), 258-262.
- Georg Cantor, On a Property of the Class of all Real Algebraic Numbers, (English version).
- Wolfdieter Lang, Cantor's List of Real Algebraic Numbers of Heights 1 to 7, arXiv:2307.10645 [math.NT], 2023.
Comments