cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362365 The sum of the coefficients of x^k in the expansion of (x + x^2 + x^3 + x^4 + x^5 + x^6)^n with k divisible by 4.

Original entry on oeis.org

1, 9, 55, 322, 1946, 11664, 69980, 419912, 2519416, 15116544, 90699280, 544195552, 3265173536, 19591041024, 117546246080, 705277476992, 4231664861056, 25389989167104, 152339935002880, 914039610015232, 5484237660094976, 32905425960566784, 197432555763399680
Offset: 1

Views

Author

Yui Chit Chan, Apr 17 2023

Keywords

Comments

a(n) is the number of ways that the sum of n labeled 6-sided dice is divisible by 4. This is important for the game called Mahjong, where the remainder of the sum of n randomly rolled dice when divided by 4 determines the starting player. Usually n=3.

Examples

			For n=2, (x + x^2 + x^3 + x^4 + x^5 + x^6)^2 = x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 5*x^8 + 4*x^9 + 3*x^10 + 2*x^11 + x^12. So a(2) = 3 + 5 + 1 = 9.
		

Crossrefs

Programs

  • MATLAB
    an=(6^n+(-1+1i)^n+(-1-1i)^n)/4
    
  • Mathematica
    LinearRecurrence[{4, 10, 12}, {1, 9, 55}, 30] (* Paolo Xausa, Aug 30 2024 *)
  • PARI
    a(n)=polcoef(lift(Mod(x+x^2+x^3+x^4+x^5+x^6, 1-x^4)^n), 0) \\ Andrew Howroyd, Apr 17 2023

Formula

a(n) = (1/4)*6^n + (2^(n/2-1))*cos(3*Pi*n/4).
a(n) = (1/4)*(6^n + (-1+i)^n + (-1-i)^n), where i is the imaginary unit.
a(n) = (1/4)*(A000400(n) + 2*A009116(n)).
a(n) = 4*a(n-1) + 10*a(n-2) + 12*a(n-3).
G.f.: x*(1 + 5*x + 9*x^2)/((1 - 6*x)*(1 + 2*x + 2*x^2)).
E.g.f.: (1/4)*exp(6*x) + cos(x)/(2*exp(x)) - 3/4.
Limit_{n->oo} a(n)/6^n = 1/4.