cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362370 Triangle read by rows. T(n, k) = ([x^k] P(n, x)) // k! where P(n, x) = Sum_{k=1..n} P(n - k, x) * x if n >= 1 and P(0, x) = 1. The notation 's // t' means integer division and is a shortcut for 'floor(s/t)'.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 1, 4, 4, 2, 0, 0, 0, 0, 0, 0, 1, 4, 6, 3, 1, 0, 0, 0, 0, 0, 0, 1, 5, 7, 5, 1, 0, 0, 0, 0, 0, 0, 0, 1, 5, 9, 6, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Peter Luschny, Apr 17 2023

Keywords

Comments

Row n gives the coefficients of the set partition polynomials of type m = 0 (the base case). The sequence of these polynomial sequences starts: this sequence, A048993, A156289, A291451, A291452, ...

Examples

			Triangle T(n, k) starts:
  [0] [1]
  [1] [0, 1]
  [2] [0, 1, 0]
  [3] [0, 1, 1, 0]
  [4] [0, 1, 1, 0, 0]
  [5] [0, 1, 2, 1, 0, 0]
  [6] [0, 1, 2, 1, 0, 0, 0]
  [7] [0, 1, 3, 2, 0, 0, 0, 0]
  [8] [0, 1, 3, 3, 1, 0, 0, 0, 0]
  [9] [0, 1, 4, 4, 2, 0, 0, 0, 0, 0]
		

Crossrefs

Cf. A097805, A362307 (row sums).
Cf. the family of partition polynomials: this sequence (m=0), A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).

Programs

  • Maple
    T := (n, k) -> iquo(binomial(n - 1, k - 1), k!):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
  • SageMath
    R = PowerSeriesRing(ZZ, "x")
    x = R.gen().O(33)
    @cached_function
    def p(n) -> Polynomial:
        if n == 0: return R(1)
        return sum(p(n - k) * x for k in range(1, n + 1))
    def A362370_row(n) -> list[int]:
        L = p(n).list()
        return [L[k] // factorial(k) for k in range(n + 1)]
    for n in range(10):
        print(A362370_row(n))

Formula

T(n, k) = floor(A097805(n, k) / k!).