A362370 Triangle read by rows. T(n, k) = ([x^k] P(n, x)) // k! where P(n, x) = Sum_{k=1..n} P(n - k, x) * x if n >= 1 and P(0, x) = 1. The notation 's // t' means integer division and is a shortcut for 'floor(s/t)'.
1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 1, 4, 4, 2, 0, 0, 0, 0, 0, 0, 1, 4, 6, 3, 1, 0, 0, 0, 0, 0, 0, 1, 5, 7, 5, 1, 0, 0, 0, 0, 0, 0, 0, 1, 5, 9, 6, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle T(n, k) starts: [0] [1] [1] [0, 1] [2] [0, 1, 0] [3] [0, 1, 1, 0] [4] [0, 1, 1, 0, 0] [5] [0, 1, 2, 1, 0, 0] [6] [0, 1, 2, 1, 0, 0, 0] [7] [0, 1, 3, 2, 0, 0, 0, 0] [8] [0, 1, 3, 3, 1, 0, 0, 0, 0] [9] [0, 1, 4, 4, 2, 0, 0, 0, 0, 0]
Crossrefs
Programs
-
Maple
T := (n, k) -> iquo(binomial(n - 1, k - 1), k!): seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
-
SageMath
R = PowerSeriesRing(ZZ, "x") x = R.gen().O(33) @cached_function def p(n) -> Polynomial: if n == 0: return R(1) return sum(p(n - k) * x for k in range(1, n + 1)) def A362370_row(n) -> list[int]: L = p(n).list() return [L[k] // factorial(k) for k in range(n + 1)] for n in range(10): print(A362370_row(n))
Formula
T(n, k) = floor(A097805(n, k) / k!).
Comments