A362409 a(n) is the least number that is the sum of a Fibonacci number and a square in exactly n ways.
15, 7, 3, 1, 17
Offset: 0
Examples
a(0) = 15 because 15 is not the sum of a Fibonacci number and a square. a(1) = 7 because 7 = A000045(4) + 2^2 is the sum of a Fibonacci number and a square in one way. a(2) = 3 because 3 = A000045(3) + 1^2 = A000045(4) + 0^2. a(3) = 1 because 1 = A000045(0) + 1^2 = A000045(1) + 0^2 = A000045(2) + 0^2. a(4) = 17 because 17 = A000045(1) + 4^2 = A000045(2) + 4^2 = A000045(6) + 3^2 = A000045(7) + 2^2.
Programs
-
Maple
N:= 10^8: # to get terms <= N V:= Array(0..N): for i from 0 do f:= combinat:-fibonacci(i); if f >= N then break fi; s:= floor(sqrt(N-f)); J:=[seq(f+i^2,i=0..s)]; V[J]:= V[J] +~ 1; od: W:= Array(0..max(V)): for i from 1 to N do w:= V[i]; if W[w] = 0 then W[w]:= i fi od: convert(W,list);
Comments