cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362434 Numbers that can be written as A000045(i) + j^2 for i,j>=0 in 4 ways.

Original entry on oeis.org

17, 5185, 1669265, 537497857, 173072640401, 55728852710977, 17944517500293905, 5778078906241926145, 1860523463292399924497, 599082777101246533761601, 192902793703138091471310737, 62114100489633364207228295425, 20000547454868240136636039815825, 6440114166367083690632597592399937
Offset: 1

Views

Author

Robert Israel, Apr 21 2023

Keywords

Comments

A000045(1) and A000045(2) are counted separately, even though they both are 1.

Examples

			17 = A000045(1) + 4^2 = A000045(2) + 4^2 = A000045(6) + 3^2 = A000045(7) + 2^2.
5185 = A000045(1) + 72^2 = A000045(2) + 72^2 = A000045(12) + 71^2 = A000045(18) + 51^2.
1669265 = A000045(1) + 1292^2 = A000045(2) + 1292^2 = A000045(18) + 1291^2 = A000045(30) + 915^2.
537497857 = A000045(1) + 23184^2 = A000045(2) + 23184^2 = A000045(24) + 23183^2 = A000045(42) + 16419^2.
		

Crossrefs

Programs

  • Maple
    N:= 10^6: # to get terms <= N
    V:= Array(0..N, datatype=integer[1]):
    for i from 0 do
     f:= combinat:-fibonacci(i);
     if f > N then break fi;
     s:= floor(sqrt(N-f));
     J:=[seq(f+i^2, i=0..s)];
     V[J]:= V[J] +~ 1;
    od:
    select(i -> V[i] >= 4, [$1..N]);
  • PARI
    A362503(n) = my(f, s=0); for(i=0, oo, if(nsqrtint(y), break); t=y/d-d; if(t%2==0, for(k=0, j-1, if(issquare(t^2+4*(x-fibonacci(k))), listput(v, x+t^2/4))))))); v=Set(v); for(i=1, #v, if(v[i]>nn, break); if(A362503(v[i])==4, print1(v[i], ", "))); \\ Jinyuan Wang, Apr 24 2023

Formula

With a = A000045(6*k-1) and b = A000045(6*k) and x = 1 + b^2/4, we have
x = A000045(1) + (b/2)^2
= A000045(2) + (b/2)^2
= A000045(6*k) + (b/2 - 1)^2
= A000045(12*k-6) + (3*b/2 - a)^2.
Conjecture: a(n) = 1 + A000045(6*n)^2/4.

Extensions

More terms from Jinyuan Wang, Apr 23 2023

A362503 a(n) is the number of k such that n - A000045(k) is a square.

Original entry on oeis.org

1, 3, 3, 2, 2, 3, 2, 1, 1, 3, 2, 1, 2, 1, 2, 0, 1, 4, 1, 1, 0, 2, 2, 0, 1, 2, 2, 1, 1, 1, 2, 0, 0, 1, 1, 1, 1, 3, 3, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 3, 1, 1, 0, 1, 1, 1, 2, 0, 2, 0, 0, 1, 0, 2, 2, 1, 1, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 1, 1, 1, 0, 0, 2, 1, 1, 0, 1, 1, 0, 0, 0, 2
Offset: 0

Views

Author

Robert Israel, Apr 22 2023

Keywords

Comments

Number of ways to write n as the sum of a Fibonacci number and a square, where A000045(1) and A000045(2) are counted as separate.

Examples

			a(5) = 3 because 5 = A000045(1) + 2^2 = A000045(2) + 2^2 = A000045(5) + 0^2.
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get terms <= N
    V:= Array(0..N):
    for i from 0 do
      f:= combinat:-fibonacci(i);
      if f >= N then break fi;
      s:= floor(sqrt(N-f));
      J:=[seq(f+i^2, i=0..s)];
      V[J]:= V[J] +~ 1;
    od:
    convert(V,list);
  • PARI
    f(n) = my(k=1); while (fibonacci(k) <= n, k++); k; \\ A108852
    a(n) = sum(k=0, f(n), issquare(n-fibonacci(k))); \\ Michel Marcus, Apr 23 2023

Formula

a(1 + A000045(6*k)^2/4) >= 4.
Showing 1-2 of 2 results.