A362414 a(n) = gcd(n, phi(n)^2) / gcd(n, phi(n)).
1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 3, 5
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[Gcd(n, EulerPhi(n)^2) / Gcd(n, EulerPhi(n)): n in [1..100]];
-
Mathematica
A362414[n_]:=With[{p=EulerPhi[n]},GCD[n,p^2]/GCD[n,p]]; Array[A362414,100] (* Paolo Xausa, Oct 22 2023 *)
-
PARI
a(n)=my(f=eulerphi(n)); gcd(n,f^2)/gcd(n,f) \\ Charles R Greathouse IV, May 03 2023
Formula
1 <= a(n) <= sqrt(n). The lower bound is sharp (squarefree numbers), as is the upper bound (squares of primes). - Charles R Greathouse IV, May 03 2023
Comments