cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362414 a(n) = gcd(n, phi(n)^2) / gcd(n, phi(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 7, 3, 5
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2023

Keywords

Comments

a(n) = 1 if n is squarefree.

Crossrefs

Programs

  • Magma
    [Gcd(n, EulerPhi(n)^2) / Gcd(n, EulerPhi(n)): n in [1..100]];
    
  • Mathematica
    A362414[n_]:=With[{p=EulerPhi[n]},GCD[n,p^2]/GCD[n,p]];
    Array[A362414,100] (* Paolo Xausa, Oct 22 2023 *)
  • PARI
    a(n)=my(f=eulerphi(n)); gcd(n,f^2)/gcd(n,f) \\ Charles R Greathouse IV, May 03 2023

Formula

a(n) = gcd(n,A127473(n)) / A009195(n).
1 <= a(n) <= sqrt(n). The lower bound is sharp (squarefree numbers), as is the upper bound (squares of primes). - Charles R Greathouse IV, May 03 2023