A362423 Number of partitions of n into 3 perfect powers (A001597).
0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 1, 0, 2, 2, 2, 2, 1, 2, 1, 0, 2, 3, 3, 2, 2, 3, 2, 1, 3, 4, 3, 2, 4, 4, 1, 1, 3, 4, 2, 3, 3, 3, 3, 1, 3, 3, 4, 3, 3, 4, 3, 2, 2, 4, 5, 3, 4, 4, 2, 1, 4, 5, 2, 3, 3, 5, 1, 2, 4, 5, 4, 2, 4, 2, 4, 0, 3, 5, 5, 2
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Perfect Power.
Programs
-
Mathematica
perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; a[n_] := Count[IntegerPartitions[n, {3}], ?(AllTrue[#, perfectPowerQ] &)]; Array[a, 100, 0] (* _Amiram Eldar, May 05 2023 *)