A362492 E.g.f. satisfies A(x) = exp(x - x^2/2 * A(x)^2).
1, 1, 0, -8, -38, 106, 3676, 24508, -296036, -9149156, -56500064, 2211573376, 64958496472, 184823374360, -35372361487280, -971135892546224, 4364710018963216, 1034808592156017424, 25290798052846014208, -474242641154857953152, -49625273567646267051104
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..403
- Eric Weisstein's World of Mathematics, Lambert W-Function.
Programs
-
Maple
N:= 50: # for a(0)..a(N) egf:= exp(x - LambertW(x^2 * exp(2*x))/2): S:=series(egf,x,N+1): [seq](coeff(S,x,i)*i!,i=0..N); # Robert Israel, May 22 2023
-
PARI
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^2*exp(2*x))/2)))
Formula
E.g.f.: exp(x - LambertW(x^2 * exp(2*x))/2) = sqrt( LambertW(x^2 * exp(2*x))/x^2 ).
a(n) = n! * Sum_{k=0..floor(n/2)} (-1/2)^k * (2*k+1)^(n-k-1) / (k! * (n-2*k)!).