A362503 a(n) is the number of k such that n - A000045(k) is a square.
1, 3, 3, 2, 2, 3, 2, 1, 1, 3, 2, 1, 2, 1, 2, 0, 1, 4, 1, 1, 0, 2, 2, 0, 1, 2, 2, 1, 1, 1, 2, 0, 0, 1, 1, 1, 1, 3, 3, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 3, 1, 1, 0, 1, 1, 1, 2, 0, 2, 0, 0, 1, 0, 2, 2, 1, 1, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 1, 1, 1, 0, 0, 2, 1, 1, 0, 1, 1, 0, 0, 0, 2
Offset: 0
Keywords
Examples
a(5) = 3 because 5 = A000045(1) + 2^2 = A000045(2) + 2^2 = A000045(5) + 0^2.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
N:= 100: # to get terms <= N V:= Array(0..N): for i from 0 do f:= combinat:-fibonacci(i); if f >= N then break fi; s:= floor(sqrt(N-f)); J:=[seq(f+i^2, i=0..s)]; V[J]:= V[J] +~ 1; od: convert(V,list);
-
PARI
f(n) = my(k=1); while (fibonacci(k) <= n, k++); k; \\ A108852 a(n) = sum(k=0, f(n), issquare(n-fibonacci(k))); \\ Michel Marcus, Apr 23 2023
Formula
a(1 + A000045(6*k)^2/4) >= 4.
Comments