A362585 Triangle read by rows, T(n, k) = A000670(n) * binomial(n, k).
1, 1, 1, 3, 6, 3, 13, 39, 39, 13, 75, 300, 450, 300, 75, 541, 2705, 5410, 5410, 2705, 541, 4683, 28098, 70245, 93660, 70245, 28098, 4683, 47293, 331051, 993153, 1655255, 1655255, 993153, 331051, 47293, 545835, 4366680, 15283380, 30566760, 38208450, 30566760, 15283380, 4366680, 545835
Offset: 0
Examples
[0] 1; [1] 1, 1; [2] 3, 6, 3; [3] 13, 39, 39, 13; [4] 75, 300, 450, 300, 75; [5] 541, 2705, 5410, 5410, 2705, 541; [6] 4683, 28098, 70245, 93660, 70245, 28098, 4683;
Crossrefs
Programs
-
SageMath
def TransOrdPart(m, n) -> list[int]: @cached_function def P(m: int, n: int): R = PolynomialRing(ZZ, "x") if n == 0: return R(1) return R(sum(binomial(m * n, m * k) * P(m, n - k) * x for k in range(1, n + 1))) T = P(m, n) def C(k) -> int: return sum(T[j] * binomial(n, k) for j in range(n + 1)) return [C(k) for k in range(n+1)] def A362585(n) -> list[int]: return TransOrdPart(1, n) for n in range(6): print(A362585(n))