A362593 Number of coprime positive integer S-unit solutions to a + b = c where a <= b < c, and where S = {prime(1), ..., prime(n)}.
0, 1, 4, 17, 63, 190, 545, 1433, 3649, 8828, 20015, 44641, 95358, 199081, 412791, 839638, 1663449
Offset: 0
Examples
For n = 2, the a(2) = 4 solutions are 1 + 1 = 2, 1 + 2 = 3, 1 + 3 = 4, and 1 + 8 = 9. For n = 3, the a(3) = 17 solutions are 1 + 1 = 2, 1 + 2 = 3, 1 + 3 = 4, 1 + 4 = 5, 1 + 5 = 6, 1 + 8 = 9, 1 + 9 = 10, 1 + 15 = 16, 1 + 24 = 25, 1 + 80 = 81, 2 + 3 = 5, 2 + 25 = 27, 3 + 5 = 8, 3 + 125 = 128, 4 + 5 = 9, 5 + 27 = 32, and 9 + 16 = 25.
Links
- A. Alvarado, A. Koutsianas, B. Malmskog, C. Rasmussen, C. Vincent, and M. West, A robust implementation for solving the S-unit equation and several applications, arXiv:1903.00977 [math.NT], 2019.
- B. M. M. de Weger, Solving exponential Diophantine equations using lattice basis reduction algorithms, J. Number Theory 26 (1987), no. 3, 325-367.
- R. von Känel and B. Matschke, Solving S-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via Shimura-Taniyama conjecture, arXiv:1605.06079 [math.NT], 2016.
Programs
-
SageMath
from sage.rings.number_field.S_unit_solver import solve_S_unit_equation def a(n): Q = CyclotomicField(1) S = Q.primes_above(prod([p for p in Primes()[:n]])) sols = len(solve_S_unit_equation(Q, S)) return (sols + 1)/3
Formula
a(n) = (A362567(n) + 3)/6 if n > 0.
Comments