A365535 Composite numbers k such that the core and the kernel of k are equal.
6, 8, 10, 14, 15, 21, 22, 24, 26, 27, 30, 32, 33, 34, 35, 38, 39, 40, 42, 46, 51, 54, 55, 56, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 88, 91, 93, 94, 95, 96, 102, 104, 105, 106, 110, 111, 114, 115, 118, 119, 120, 122, 123, 125, 128, 129, 130, 133, 134, 135, 136, 138
Offset: 1
Keywords
Examples
6, 10, 14, 15, 21,... are all terms because they are composite squarefree 8, 27, 32,... are all terms because they are all odd prime powers. 24 = 2^3*3^1 is a term because its prime power factors (1,3) are both odd.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[150], CompositeQ[#] && AllTrue[FactorInteger[#][[;; , 2]], OddQ] &] (* Amiram Eldar, Sep 08 2023 *)
-
PARI
isok(k) = if (!isprime(k) && (k>1), core(k) == factorback(factorint(k)[, 1])); \\ Michel Marcus, Sep 08 2023
-
Python
from itertools import count, islice from sympy import factorint def A365535_gen(): # generator of terms return (n for n in count(2) if sum(f:=factorint(n).values())>1 and all(d&1 for d in f)) A365535_list = list(islice(A365535_gen(),30)) # Chai Wah Wu, Sep 15 2023
Extensions
More terms from Michel Marcus, Sep 08 2023
Comments