A362605 Numbers whose prime factorization has more than one mode. Numbers without a unique exponent of maximum frequency in the prime signature.
6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154
Offset: 1
Keywords
Examples
The prime indices of 180 are {1,1,2,2,3}, with modes {1,2}, so 180 is in the sequence, and the sequence differs from A182853. The terms together with their prime indices begin: 6: {1,2} 10: {1,3} 14: {1,4} 15: {2,3} 21: {2,4} 22: {1,5} 26: {1,6} 30: {1,2,3} 33: {2,5} 34: {1,7} 35: {3,4} 36: {1,1,2,2} 38: {1,8} 39: {2,6} 42: {1,2,4} 46: {1,9} 51: {2,7} 55: {3,5}
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
q:= n-> (l-> nops(l)>1 and l[-1]=l[-2])(sort(map(i-> i[2], ifactors(n)[2]))): select(q, [$1..250])[]; # Alois P. Heinz, May 10 2023
-
Mathematica
Select[Range[100],Count[Last/@FactorInteger[#], Max@@Last/@FactorInteger[#]]>1&]
-
PARI
is(n) = {my(e = factor(n)[, 2]); if(#e < 2, 0, e = vecsort(e); e[#e-1] == e[#e]);} \\ Amiram Eldar, Jan 20 2024
-
Python
from sympy import factorint def ok(n): return n>1 and (e:=list(factorint(n).values())).count(max(e))>1 print([k for k in range(155) if ok(k)]) # Michael S. Branicky, May 06 2023
Comments