cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362609 Number of integer partitions of n with more than one part of least multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 19, 26, 42, 51, 74, 103, 136, 174, 246, 303, 411, 523, 674, 844, 1114, 1364, 1748, 2174, 2738, 3354, 4247, 5139, 6413, 7813, 9613, 11630, 14328, 17169, 20958, 25180, 30497, 36401, 44025, 52285, 62834, 74626, 89111, 105374, 125662
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

These are partitions where no part appears fewer times than all of the others.

Examples

			The partition (4,2,2,1) has least multiplicity 1, and two parts of multiplicity 1 (namely 1 and 4), so is counted under a(9).
The a(3) = 1 through a(9) = 14 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)     (54)
              (41)  (51)    (52)    (62)     (63)
                    (321)   (61)    (71)     (72)
                    (2211)  (421)   (431)    (81)
                            (3211)  (521)    (432)
                                    (3221)   (531)
                                    (3311)   (621)
                                    (4211)   (3321)
                                    (32111)  (4221)
                                             (4311)
                                             (5211)
                                             (42111)
                                             (222111)
                                             (321111)
		

Crossrefs

For parts instead of multiplicities we have A117989, ranks A283050.
For median instead of co-mode we have A238479, complement A238478.
These partitions have ranks A362606.
For mode instead of co-mode we have A362607, ranks A362605.
For mode complement instead of co-mode we have A362608, ranks A356862.
The complement is counted by A362610, ranks A359178.
A000041 counts integer partitions.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#],Min@@Length/@Split[#]]>1&]],{n,0,30}]