A362613 Number of co-modes in the prime factorization of n.
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2
Offset: 1
Keywords
Examples
The factorization of 180 is 2*2*3*3*5, co-modes {5}, so a(180) = 1. The factorization of 900 is 2*2*3*3*5*5, co-modes {2,3,5}, so a(900) = 3. The factorization of 8820 is 2*2*3*3*5*7*7, co-modes {5}, so a(8820) = 1.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[x=Last/@If[n==1,0,FactorInteger[n]];Count[x,Min@@x],{n,100}]
-
PARI
a(n) = if(n==1, 0, my(f=factor(n)[,2], m=vecmin(f)); #select(v->v==m, f)) \\ Andrew Howroyd, May 08 2023
-
Python
from sympy import factorint def A362613(n): v = factorint(n).values() w = min(v,default=0) return sum(1 for e in v if e<=w) # Chai Wah Wu, May 08 2023
Comments