A362637 Number of partitions of [n] whose blocks are ordered with increasing least elements and where block i (except possibly the last) has size at least i.
1, 1, 2, 4, 10, 30, 96, 323, 1184, 4784, 20708, 93073, 431004, 2080610, 10615276, 57291063, 322921896, 1871715144, 11065738360, 66843918825, 415837464280, 2684434034706, 18010208402784, 124877499979859, 886741484322660, 6399683149311272, 46802092819866340
Offset: 0
Keywords
Examples
a(0) = 1: (), the empty partition. a(1) = 1: 1. a(2) = 2: 12, 1|2. a(3) = 4: 123, 12|3, 13|2, 1|23. a(4) = 10: 1234, 123|4, 124|3, 12|34, 134|2, 13|24, 14|23, 1|234, 1|23|4, 1|24|3. a(5) = 30: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|34|5, 12|35|4, 1345|2, 134|25, 135|24, 13|245, 13|24|5, 13|25|4, 145|23, 14|235, 14|23|5, 15|234, 1|2345, 1|234|5, 15|23|4, 1|235|4, 1|23|45, 14|25|3, 15|24|3, 1|245|3, 1|24|35, 1|25|34.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..695
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<=t, 1, add(b(n-j, t+1)*binomial(n-1, j-1), j=t..n))) end: a:= n-> b(n, 1): seq(a(n), n=0..30);