A362639 Number of partitions of [n] whose blocks are ordered with increasing least elements and where block i (except possibly the last) has size i.
1, 1, 1, 1, 2, 3, 4, 15, 36, 70, 120, 756, 2800, 7920, 18900, 40040, 388080, 2106000, 8408400, 27489000, 77837760, 197520960, 2756754000, 20903929200, 113809696000, 497097881280, 1847907341280, 6062876820000, 17990209036800, 343877493960000, 3501594297801600
Offset: 0
Keywords
Examples
a(0) = 1: (), the empty partition. a(1) = 1: 1. a(2) = 1: 1|2. a(3) = 1: 1|23. a(4) = 2: 1|23|4, 1|24|3. a(5) = 3: 1|23|45, 1|24|35, 1|25|34. a(6) = 4: 1|23|456, 1|24|356, 1|25|346, 1|26|345. a(7) = 15: 1|23|456|7, 1|23|457|6, 1|23|467|5, 1|24|356|7, 1|24|357|6, 1|24|367|5, 1|25|346|7, 1|25|347|6, 1|26|345|7, 1|27|345|6, 1|26|347|5, 1|27|346|5, 1|25|367|4, 1|26|357|4, 1|27|356|4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..724
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n<=t, 1, b(n-t, t+1)*binomial(n-1, t-1)) end: a:= n-> b(n, 1): seq(a(n), n=0..30);