A362640 Product of the larger primes, q, in the Goldbach partitions of 2n such that p + q = 2n, p <= q, and p,q prime (or 1 if no Goldbach partition of 2n exists).
1, 2, 3, 5, 35, 7, 77, 143, 143, 221, 3553, 4199, 5681, 391, 7429, 551, 351509, 392863, 589, 24679, 765049, 47027, 1175921, 58642669, 2318087, 55883, 95041567, 84323, 2961799, 5037203051, 78647, 367569469, 14263488419, 2257, 403723843, 22531226387, 461671607, 761740327
Offset: 1
Examples
a(10) = 221; 2*10 = 20 has two Goldbach partitions, namely 17+3 and 13+7. The product of the larger parts of these partitions, is 17*13 = 221.
Links
- Eric Weisstein's World of Mathematics, Goldbach Partition
- Wikipedia, Goldbach's conjecture
- Index entries for sequences related to Goldbach conjecture
- Index entries for sequences related to partitions
Crossrefs
Programs
-
Mathematica
Table[Product[(2 n - k)^((PrimePi[k] - PrimePi[k - 1]) (PrimePi[2 n - k] - PrimePi[2 n - k - 1])), {k, n}], {n, 40}]