cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A362691 E.g.f. satisfies A(x) = exp(x^3 + x * A(x)).

Original entry on oeis.org

1, 1, 3, 22, 173, 1836, 24847, 403474, 7667865, 167097016, 4108985531, 112562882334, 3399748630357, 112246652293972, 4022094151907847, 155461592488721866, 6447531477912609713, 285606134199075271536, 13458367778796518816755
Offset: 0

Views

Author

Seiichi Manyama, May 01 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x^3-lambertw(-x*exp(x^3)))))

Formula

E.g.f.: -LambertW(-x * exp(x^3)) / x = exp( x^3 - LambertW(-x*exp(x^3)) ).
a(n) = n! * Sum_{k=0..floor(n/3)} (n-3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).

A362736 E.g.f. satisfies A(x) = exp(x^2 + x / A(x)).

Original entry on oeis.org

1, 1, 1, 4, -3, 96, -755, 10368, -147623, 2492416, -47137959, 996741120, -23260103339, 594198429696, -16492683271259, 494278721929216, -15908038836914895, 547238863907586048, -20038031401448021327, 778147549666716155904, -31943565308583934360019
Offset: 0

Views

Author

Seiichi Manyama, May 01 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2+lambertw(x*exp(-x^2)))))

Formula

E.g.f.: x / LambertW(x*exp(-x^2)) = exp( x^2 + LambertW(x*exp(-x^2)) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (-n+2*k+1)^(n-k-1) / (k! * (n-2*k)!).

A362747 E.g.f. satisfies A(x) = exp(x^2/2 + x * A(x)).

Original entry on oeis.org

1, 1, 4, 22, 182, 1996, 27412, 453160, 8767516, 194438800, 4864250096, 135538060384, 4163356010728, 139784741268160, 5093269640966704, 200170986137297536, 8440841773833141008, 380153135554220691712, 18212499110682362677312
Offset: 0

Views

Author

Seiichi Manyama, May 02 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x^2/2-lambertw(-x*exp(x^2/2)))))

Formula

E.g.f.: -LambertW(-x * exp(x^2/2)) / x = exp( x^2/2 - LambertW(-x*exp(x^2/2)) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k+1)^(n-k-1) / (2^k * k! * (n-2*k)!).
a(n) ~ sqrt(1+LambertW(exp(-2))) * n^(n-1) / (exp(n)*LambertW(exp(-2))^((n+1)/2)). - Vaclav Kotesovec, Nov 10 2023
Showing 1-3 of 3 results.