A362725 a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A005259(k)*x^k/k ).
1, 5, 123, 3650, 118059, 4015380, 141175410, 5082313276, 186243853995, 6920379988871, 260030830600748, 9860709859708350, 376821110248674594, 14494688046084958080, 560708803489098556632, 21797478402692370515400, 851057798310071946207915, 33356751162583463626417872
Offset: 0
Links
- F. Beukers, Some congruences for the Apery numbers, Journal of Number Theory, Vol. 21, Issue 2, Oct. 1985, pp. 141-155. local copy
- Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
Programs
Formula
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for all primes p >= 3 and positive integers n and r.
Comments