cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362727 a(n) = [x^n] ( E(x)/E(-x) )^n where E(x) = exp( Sum_{k >= 1} A208675(k)*x^k/k ).

Original entry on oeis.org

1, 2, 8, 110, 960, 12502, 136952, 1746558, 20951040, 267467294, 3347043208, 43051344074, 550991269824, 7146318966438, 92706899799480, 1211369977374310, 15857138035286016, 208493724775866726, 2747100161210031944, 36305149229744449050, 480750961929272288960
Offset: 0

Views

Author

Peter Bala, May 02 2023

Keywords

Comments

A208675(n) = B(n,n-1,n-1) in the notation of Straub, equation 24, where it is shown that the supercongruences A208675(n*p^k) == A208675(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.

Crossrefs

Programs

  • Maple
    A208675 := proc(n) add( (-1)^k*binomial(n-1,k)*binomial(2*n-k-1,n-k)^2, k = 0..n-1) end:
    E(n,x) := series(exp(n*add(2*A208675(2*k+1)*x^(2*k+1)/(2*k+1), k = 0..10)), x, 21):
    seq(coeftayl(E(n,x), x = 0, n), n = 0..20);

Formula

Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 7 and positive integers n and r.