A362728 a(n) = [x^n] E(x)^n where E(x) = exp( Sum_{k >= 1} A108628(k-1)*x^k/k ).
1, 1, 9, 91, 985, 11101, 128475, 1515032, 18116825, 218988046, 2669804209, 32776883899, 404733925435, 5022161428571, 62578069656776, 782560813918216, 9817011145746649, 123492956278927438, 1557295053170126994, 19681186581532094418
Offset: 0
Links
- Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
Programs
Formula
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for all primes p >= 7 and positive integers n and r.
Comments