A362731 a(n) = [x^n] E(x)^n where E(x) = exp( Sum_{k >= 1} A000172(k)*x^k/k ).
1, 2, 18, 182, 1954, 21702, 246366, 2839846, 33105186, 389264798, 4608481918, 54862022910, 656099844526, 7876525155020, 94867757934870, 1145843922848232, 13873839714404642, 168345900709550388, 2046612356962697502, 24923311881995950740, 303974276349311203854
Offset: 0
Links
- F. Beukers, Some congruences for the Apery numbers, Journal of Number Theory, Vol. 21, Issue 2, Oct. 1985, pp. 141-155. local copy
Programs
Formula
The Gauss congruence a(n*p^r) == a(n*p^(r-1)) (mod p^r) holds for all primes p and positive integers n and r.
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for
all primes p and positive integers n and r.
Comments