cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362742 Decimal expansion of Sum_{k>=1} (-1)^(k+1)*floor(sqrt(k))/k.

Original entry on oeis.org

5, 9, 1, 5, 6, 0, 7, 7, 9, 3, 4, 9, 8, 1, 7, 3, 4, 0, 2, 1, 3, 8, 4, 6, 9, 0, 3, 3, 4, 5, 3, 4, 3, 4, 6, 9, 5, 6, 2, 3, 5, 3, 8, 9, 6, 2, 5, 4, 5, 6, 7, 1, 7, 4, 6, 8, 1, 0, 7, 6, 8, 4, 5, 9, 1, 6, 5, 5, 7, 9, 8, 0, 5, 3, 0, 2, 4, 9, 5, 9, 0, 8, 3, 6, 2, 7, 0, 4, 7, 2, 9, 0, 7, 8, 7, 6, 2, 7, 6, 9, 7, 8, 3, 8, 2, 7
Offset: 0

Views

Author

Amiram Eldar, May 02 2023

Keywords

Comments

If the floor function is replaced by the fractional part function, then Sum_{k>=1} (-1)^(k+1)*frac(sqrt(k))/k = (A113024 - (this constant)) = 0.01333786407...

Examples

			0.591560779349817340213846903345...
		

Crossrefs

Programs

  • Maple
    evalf(log(2) + Sum((-1)^n*n*Sum(1/((n^2 + 2*i - 1)*(n^2 + 2*i)), i = 1..n), n = 1..infinity), 200); # Vaclav Kotesovec, May 02 2023
  • Mathematica
    RealDigits[NIntegrate[(1 - EllipticTheta[4, x])/(2*x*(x + 1)), {x, 0, 1}, WorkingPrecision -> 30]][[1]]
  • PARI
    default(realprecision, 200); log(2) + sumalt(n=1, (-1)^n*n*sum(i=1, n, 1/((n^2 + 2*i - 1)*(n^2 + 2*i)) )) \\ Vaclav Kotesovec, May 02 2023

Formula

Equals log(2) + Sum_{n>=1} (-1)^n*n*Sum_{i=1..n} 1/((n^2+2*i-1)*(n^2+2*i)) (Li, 2019).
Equals Integral_{x=0..1} (1-theta_4(0,x))/(2*x*(x+1)), where theta_4(z, q) is the 4th Jacobi theta function (Hintze, 2019).

Extensions

More digits from Vaclav Kotesovec, May 02 2023